A New Mechanism for the Dependence of Tropical Convection on Free‐Tropospheric Humidity

Research output: Contribution to journalArticleScientificpeer-review


Atmospheric deep convection is responsible for transport of the most important greenhouse gas, water vapor, to the free-troposphere and for most of the precipitation on Earth. Observations show that deep convection is strongly sensitive to the amount of moisture in the low-to-midtroposphere. The current understanding is that this sensitivity is due to entrainment. In this study, it is found that over tropical oceans shallow warm anomalies, likely strong enough to hinder subsequent convection, are observed just above the boundary layer after precipitation, but only where the low-to-midtroposphere is dry. The results, showing a cold anomaly above the warm anomaly, suggest that evaporation of stratiform precipitation and subsidence warming below likely cause these temperature anomalies. Evaporation of stratiform precipitation should therefore be a topic of high priority for developing more realistic theories of convective weather phenomena and for improving climate and weather forecast models.
Original languageEnglish
JournalGeophysical Research Letters
Issue number5
Pages (from-to)2516–2523
Number of pages8
Publication statusPublished - 16 Mar 2018
MoE publication typeA1 Journal article-refereed

Fields of Science

  • 1172 Environmental sciences

Cite this