Abstract

MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of β cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human β cell line EndoC-βH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LβT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic β cells and pituitary gonadotropes.

Original languageEnglish
Article numbere167598
JournalJCI INSIGHT
Volume9
Issue number10
Number of pages23
ISSN2379-3708
DOIs
Publication statusPublished - 22 May 2024
MoE publication typeA1 Journal article-refereed

Fields of Science

  • Beta cells
  • Endocrinology
  • Genetic diseases
  • Neuroendocrine regulation
  • Reproductive biology
  • 3111 Biomedicine
  • 1182 Biochemistry, cell and molecular biology

Cite this