Projects per year
Abstract
at identifying unusual or abnormal sounds within audio data.
These sounds could be caused by different factors, such as
background noise, equipment malfunctions, or unexpected events.
Anomaly detection in sound is a well-studied topic, with a lot of
research being done in the field. Anomaly localization refers to
the process of identifying the specific location or region within
a sample where an anomaly (or outlier) occurs. When applied
to audio signals, anomaly localization can involve analyzing the
spectral content of the sound to detect regions that deviate from
the typical or expected pattern.
In this study, we present a simple yet effective model based
on the Student-Teacher Feature Pyramid Matching Method for
locating anomalies in audio data. Utilizing the MIMII dataset by
augmenting it with synthetic anomalies, we evaluate the method’s
accuracy. Our results demonstrate that the proposed model
can accurately locate artificially created anomalies within the
spectrograms, both in terms of time and frequency. This approach
offers a promising solution for identifying and determining the
precise location of anomalies in various audio applications.
Original language | English |
---|---|
Title of host publication | 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC) |
Number of pages | 6 |
Publisher | IEEE |
Publication date | Aug 2023 |
Pages | 286-291 |
ISBN (Electronic) | 979-8-3503-2697-0 |
DOIs | |
Publication status | Published - Aug 2023 |
MoE publication type | A4 Article in conference proceedings |
Event | Annual Computers, Software, and Applications Conference - Torino, Italy Duration: 26 Jun 2023 → 30 Jun 2023 Conference number: 47 |
Fields of Science
- 113 Computer and information sciences
- Anomaly detection (AD)
- Anomaly localization (AL)
- Audio processing
- Deep learning
- Machine learning
Projects
- 2 Finished
-
IML4E: Industrial Machine Learning for Enterprises
Nurminen, J. K. (Project manager), Hu, R. Y. (Participant), Hussain, Z. (Participant), Kemell, K.-K. (Participant), Kivimäki, J. I. (Participant), Laisi, J. S. (Participant), Lehtonen, A. I. (Participant), Luo, Y. (Participant), Lwakatare, L. E. M. (Participant), Muiruri, D. (Participant), Myllyaho, L. (Participant), Mylläri, J. (Participant), Mylläri, J. (Participant), Raatikainen, M. (Participant), Rantanen, R. J. (Participant), Rensing, F. (Participant), Salmenperä, I. E. (Participant), Samarasekara, H. (Participant), Siilasjoki, N. J. (Participant), Vidanapathirana, J. C. (Participant), Myllyaho, L. (Participant) & Raatikainen, M. (Participant)
Innovaatiorahoituskeskus Business Finland
01/05/2021 → 28/02/2025
Project: Business Finland
-
IVVES: Industrial-grade Verification and Validation of Evolving Systems
Mikkonen, T. (Project manager), Nurminen, J. K. (Project manager), Becker, L. V. A. (Participant), Hussain, Z. (Participant), Kauhanen, E. O. (Participant), Kramar, V. T. (Participant), Laanti, T. M. (Participant), Muiruri, D. (Participant), Myllyaho, L. (Participant), Mylläri, J. (Participant), Raatikainen, M. (Participant), Salmenperä, I. E. (Participant), Valjakka, J. H. (Participant), Hussain, Z. (Participant), Myllyaho, L. (Participant) & Raatikainen, M. (Participant)
01/01/2020 → 31/03/2024
Project: Business Finland