Abstract

Cerebral Dopamine Neurotrophic Factor (CDNF) shows beneficial effects in rodent models of Parkinson?s and Alzheimer?s disease. The brain is a challenging target for protein therapy due to its exclusive blood?brain barrier. Hence, the therapeutic protein should be delivered directly to the brain parenchyma. Implantation of encapsulated mammalian cells that constantly secrete CDNF is a potential approach for targeted and long-term protein delivery to the brain. In this study, we generated several CDNF-secreting cell clones derived from human retinal pigment epithelial cell line ARPE-19, and studied CDNF secretion from the clones maintained as monolayers and in polymeric microcapsules. The secretion of wild type (wt) CDNF transgene was low and the majority of the produced protein remained intracellular, locating mainly to the endoplasmic reticulum (ER). The secretion of wtCDNF decreased to even lower levels when the clones were in a non-dividing state, as in the microcapsules. Both codon optimization and deletion of the putative ER-retrieval signal (four last amino acids: KTEL) improved CDNF secretion. More importantly, the secretion of KTEL-deleted CDNF remained constant in the non-dividing clones. Thus, cells expressing KTEL-deleted CDNF, in contrast to wtCDNF, can be considered for cell encapsulation applications if the KTEL-deleted CDNF is proven to be biologically active in vivo.
Original languageEnglish
JournalCell Transplantation
ISSN0963-6897
DOIs
Publication statusPublished - 6 Mar 2019
MoE publication typeA1 Journal article-refereed

Fields of Science

  • 1182 Biochemistry, cell and molecular biology

Cite this

@article{67ef17e0a0154e4dbc88ff4dd983b244,
title = "Characterization of CDNF-Secreting ARPE-19 Cell Clones for Encapsulated Cell Therapy",
abstract = "Cerebral Dopamine Neurotrophic Factor (CDNF) shows beneficial effects in rodent models of Parkinson?s and Alzheimer?s disease. The brain is a challenging target for protein therapy due to its exclusive blood?brain barrier. Hence, the therapeutic protein should be delivered directly to the brain parenchyma. Implantation of encapsulated mammalian cells that constantly secrete CDNF is a potential approach for targeted and long-term protein delivery to the brain. In this study, we generated several CDNF-secreting cell clones derived from human retinal pigment epithelial cell line ARPE-19, and studied CDNF secretion from the clones maintained as monolayers and in polymeric microcapsules. The secretion of wild type (wt) CDNF transgene was low and the majority of the produced protein remained intracellular, locating mainly to the endoplasmic reticulum (ER). The secretion of wtCDNF decreased to even lower levels when the clones were in a non-dividing state, as in the microcapsules. Both codon optimization and deletion of the putative ER-retrieval signal (four last amino acids: KTEL) improved CDNF secretion. More importantly, the secretion of KTEL-deleted CDNF remained constant in the non-dividing clones. Thus, cells expressing KTEL-deleted CDNF, in contrast to wtCDNF, can be considered for cell encapsulation applications if the KTEL-deleted CDNF is proven to be biologically active in vivo.",
keywords = "1182 Biochemistry, cell and molecular biology",
author = "Emilia Galli and P{\"a}ivi Lindholm and Leena-Stiina Kontturi and Mart Saarma and Arto Urtti and Marjo Yliperttula",
year = "2019",
month = "3",
day = "6",
doi = "10.1177/0963689719827943",
language = "English",
journal = "Cell Transplantation",
issn = "0963-6897",
publisher = "SAGE Publications Inc.",

}

TY - JOUR

T1 - Characterization of CDNF-Secreting ARPE-19 Cell Clones for Encapsulated Cell Therapy

AU - Galli, Emilia

AU - Lindholm, Päivi

AU - Kontturi, Leena-Stiina

AU - Saarma, Mart

AU - Urtti, Arto

AU - Yliperttula, Marjo

PY - 2019/3/6

Y1 - 2019/3/6

N2 - Cerebral Dopamine Neurotrophic Factor (CDNF) shows beneficial effects in rodent models of Parkinson?s and Alzheimer?s disease. The brain is a challenging target for protein therapy due to its exclusive blood?brain barrier. Hence, the therapeutic protein should be delivered directly to the brain parenchyma. Implantation of encapsulated mammalian cells that constantly secrete CDNF is a potential approach for targeted and long-term protein delivery to the brain. In this study, we generated several CDNF-secreting cell clones derived from human retinal pigment epithelial cell line ARPE-19, and studied CDNF secretion from the clones maintained as monolayers and in polymeric microcapsules. The secretion of wild type (wt) CDNF transgene was low and the majority of the produced protein remained intracellular, locating mainly to the endoplasmic reticulum (ER). The secretion of wtCDNF decreased to even lower levels when the clones were in a non-dividing state, as in the microcapsules. Both codon optimization and deletion of the putative ER-retrieval signal (four last amino acids: KTEL) improved CDNF secretion. More importantly, the secretion of KTEL-deleted CDNF remained constant in the non-dividing clones. Thus, cells expressing KTEL-deleted CDNF, in contrast to wtCDNF, can be considered for cell encapsulation applications if the KTEL-deleted CDNF is proven to be biologically active in vivo.

AB - Cerebral Dopamine Neurotrophic Factor (CDNF) shows beneficial effects in rodent models of Parkinson?s and Alzheimer?s disease. The brain is a challenging target for protein therapy due to its exclusive blood?brain barrier. Hence, the therapeutic protein should be delivered directly to the brain parenchyma. Implantation of encapsulated mammalian cells that constantly secrete CDNF is a potential approach for targeted and long-term protein delivery to the brain. In this study, we generated several CDNF-secreting cell clones derived from human retinal pigment epithelial cell line ARPE-19, and studied CDNF secretion from the clones maintained as monolayers and in polymeric microcapsules. The secretion of wild type (wt) CDNF transgene was low and the majority of the produced protein remained intracellular, locating mainly to the endoplasmic reticulum (ER). The secretion of wtCDNF decreased to even lower levels when the clones were in a non-dividing state, as in the microcapsules. Both codon optimization and deletion of the putative ER-retrieval signal (four last amino acids: KTEL) improved CDNF secretion. More importantly, the secretion of KTEL-deleted CDNF remained constant in the non-dividing clones. Thus, cells expressing KTEL-deleted CDNF, in contrast to wtCDNF, can be considered for cell encapsulation applications if the KTEL-deleted CDNF is proven to be biologically active in vivo.

KW - 1182 Biochemistry, cell and molecular biology

U2 - 10.1177/0963689719827943

DO - 10.1177/0963689719827943

M3 - Article

JO - Cell Transplantation

JF - Cell Transplantation

SN - 0963-6897

ER -