Abstract
Forests play a vital role in mitigating climate change, as they sequester and store large quantities of carbon. This dissertation examines how carbon storage may be increased by changing forest management at the stand level. To extend the economics of forest carbon storage beyond single-species even-aged stands, this dissertation develops a bioeconomic model framework that incorporates the size and species structure of the stand, and the optimal choice between continuous cover forestry and forestry based on clearcuts. The studies apply empirically estimated growth models for boreal conifer and broadleaf tree species. The dissertation consists of a summary section and three articles.
The first article presents an analytically solvable economic model for timber production and carbon storage with optimized management regime choice between continuous cover and rotation forestry. Continuous-time optimal control theory is utilized to solve the thinning path and the potentially infinite rotation age: if no optimal finite rotation age exists, thinnings are performed indefinitely while maintaining continuous forest cover. The second article extends this model by applying a size-structured growth model for Norway spruce (Picea abies (L.) Karst.), road-side pricing of sawlog and pulpwood, variable and fixed harvesting costs, and several carbon pools. The timing and intensity of thinnings, the rotation age, and the management regime are optimized numerically. In the third article, the optimization approach of the second article is extended to mixed-species size-structured stands. Species mixtures include the commercially valuable Norway spruce and birch (Betula pendula Roth and B. pubescens Ehrh.), and other broadleaves (e.g. Eurasian aspen, Populus tremula L., and maple, Acer sp.) that have no market value.
Optimal rotation age is shown to either increase or decrease with carbon price depending on interest rate and the speed of carbon release from harvested wood products. Given empirically realistic assumptions, carbon pricing increases the rotation period and eventually causes a regime shift from rotation management to continuous cover management. Hence, carbon pricing heightens the importance of determining the management regime – continuous cover or rotation forestry – through optimization.
Optimal thinnings are invariably targeted to the largest size classes of each tree species. Carbon pricing postpones thinnings and increases the average size of harvested and standing trees, hence increasing mean stand volume. Without carbon pricing, commercially non-valuable other broadleaves are felled during each harvesting operation. When carbon storage is valued, some of the other broadleaves are retained standing until they are large, thus increasing tree species diversity and deadwood quantity.
The results suggest that moderate carbon price levels increase timber yields, especially of sawlog that may be used for long-lived products. Increasing carbon storage through changes in forest management is shown to be relatively inexpensive, and the marginal abatement cost is the lower, the higher the number of tree species in the stand.
The first article presents an analytically solvable economic model for timber production and carbon storage with optimized management regime choice between continuous cover and rotation forestry. Continuous-time optimal control theory is utilized to solve the thinning path and the potentially infinite rotation age: if no optimal finite rotation age exists, thinnings are performed indefinitely while maintaining continuous forest cover. The second article extends this model by applying a size-structured growth model for Norway spruce (Picea abies (L.) Karst.), road-side pricing of sawlog and pulpwood, variable and fixed harvesting costs, and several carbon pools. The timing and intensity of thinnings, the rotation age, and the management regime are optimized numerically. In the third article, the optimization approach of the second article is extended to mixed-species size-structured stands. Species mixtures include the commercially valuable Norway spruce and birch (Betula pendula Roth and B. pubescens Ehrh.), and other broadleaves (e.g. Eurasian aspen, Populus tremula L., and maple, Acer sp.) that have no market value.
Optimal rotation age is shown to either increase or decrease with carbon price depending on interest rate and the speed of carbon release from harvested wood products. Given empirically realistic assumptions, carbon pricing increases the rotation period and eventually causes a regime shift from rotation management to continuous cover management. Hence, carbon pricing heightens the importance of determining the management regime – continuous cover or rotation forestry – through optimization.
Optimal thinnings are invariably targeted to the largest size classes of each tree species. Carbon pricing postpones thinnings and increases the average size of harvested and standing trees, hence increasing mean stand volume. Without carbon pricing, commercially non-valuable other broadleaves are felled during each harvesting operation. When carbon storage is valued, some of the other broadleaves are retained standing until they are large, thus increasing tree species diversity and deadwood quantity.
The results suggest that moderate carbon price levels increase timber yields, especially of sawlog that may be used for long-lived products. Increasing carbon storage through changes in forest management is shown to be relatively inexpensive, and the marginal abatement cost is the lower, the higher the number of tree species in the stand.
Original language | English |
---|---|
Supervisors/Advisors |
|
Award date | 19 Nov 2020 |
Publisher | |
Publication status | Published - 2020 |
MoE publication type | G5 Doctoral dissertation (article) |
Bibliographical note
Kansainvälisiin ilmastotavoitteisiin pääseminen edellyttää metsien hiilinielujen vahvistamista. Tässä väitöskirjassa tutkitaan, miten hiilensidontaa voidaan lisätä muuttamalla metsänhoitoa. Toistaiseksi hiilensidonnan taloudellinen analyysi on rajoittunut yhden puulajin tasaikäisrakenteisiin metsiin. Väitöskirjassa kehitetään uudenlainen taloustiedettä ja ekologiaa yhdistävä mallikehikko, joka huomioi metsikön koko- ja puulajirakenteen sekä mahdollistaa valinnan jatkuvapeitteisen ja jaksollisen (päätehakkuisiin perustuvan) metsänhoidon välillä.Ensimmäinen artikkeli esittelee optimointimallin, jossa kannattavinta metsänkäytön tapaa etsittäessä huomioidaan sekä puuntuotannon että hiilensidonnan taloudellinen arvo. Jälkimmäinen sisällytetään malliin hinnoittelemalla hiilidioksidin sitominen ja vapauttaminen. Mallilla ratkaistaan optimiohjausteoriaa hyödyntäen taloudellisesti kannattavin tapa harventaa metsää ja kiertoajan pituus eli kahden päätehakkuun välinen aika. Toisin kuin aiemmissa vastaavissa malleissa, tuottoisin kiertoaika voi olla ääretön, jolloin metsää kannattaa hoitaa jatkuvapeitteisenä päätehakkuun sijaan. Toisessa artikkelissa kysymystä tarkastellaan numeerisen laskennan keinoin kuusikoissa, sisällyttäen tarkka kuvaus metsänhoidon rahavirroista sekä hiilivarastoista elävissä puissa, lahopuussa ja puutuotteissa. Kolmannessa artikkelissa laskentakehikko laajennetaan monen puulajin metsiköihin. Puulajeihin kuuluvat kaupallisesti arvokkaiden kuusen ja koivun lisäksi myös muut lehtipuut, joilla ei ole kaupallista arvoa.
Väitöskirjassa osoitetaan, että hiilen hinnoittelun vaikutus metsän kannattavimpaan hoitotapaan riippuu korkokannasta ja nopeudesta, jolla hiili vapautuu puutuotteista hakkuiden jälkeen. Realistisilla oletuksilla hiilen hinnan nostaminen lykkää kannattavinta päätehakkuuhetkeä ja johtaa lopulta siihen, että on tuottoisinta siirtyä jaksollisesta jatkuvapeitteiseen metsänhoitoon. Harvennukset kannattaa poikkeuksetta kohdistaa kunkin puulajin suurimpiin kokoluokkiin. Hiilen hinnoittelu lykkää harvennuksia, minkä seurauksena sekä korjattavat että pystyyn jätettävät puut ovat suurempia. Ilman hiilen hinnoittelua kaikki kaupallisesti arvottomat muut lehtipuut kaadetaan jokaisen hakkuun yhteydessä. Kun hiilensidonnan arvo huomioidaan, osan näistä annetaan kasvaa suuriksi ennen kaatamista, mikä lisää puulajimonimuotoisuutta ja kuolleen puun määrää metsikössä. Tulosten mukaan maltillinen hiilen hinnoittelu tyypillisesti kasvattaa keskimääräistä puuntuotosta erityisesti tukkipuun osalta. Hiilensidonnan lisääminen metsänkäsittelyn muutoksilla paljastuu suhteellisen edulliseksi, varsinkin monen puulajin metsissä. Väitöskirja osoittaa, että ilmastokestävän metsätalouden tulee pohjautua monitieteiseen ymmärrykseen metsän ekologiasta, hoidosta ja taloudesta.
Fields of Science
- 511 Economics
- 4112 Forestry