Effect of biochar on microbial biomass and biological nitrogen fixation

Research output: ThesisMaster's thesisTheses

Abstract

Biochar is a product from the pyrolysis of plant derived-biomass and it is intended to be applied to soil given its potential of carbon sequestration and soil fertility improvement. Some studies also suggest that increasing application rate of biochar has a positive feedback on biological nitrogen fixation (BNF) and on soil microbial biomass. However, these effects are not well known for boreal forests. The purpose of this study was to evaluate the effects of different biochar application rates: 0 t ha-1, 5 t ha-1 and 10 t ha-1 on BNF, on microbial biomass carbon and nitrogen (MBC and MBN), and on moss biomass. The field experiment was established in Juupajoki, Southern Finland in young Scots pine stands. The stands were amended with biochar one year before the measurements took place. BNF was determined using acetylene reduction assay (ARA), and microbial biomass was estimated using chloroform fumigation-direct extraction (CFDE). The microbial biomass samples were incubated at the temperatures: 10 °C, 15 °C and 20 °C. Biochar amendment raised soil pH, whereas no differences were verified for BNF, MBC, MBN, nor for moss biomass. There was, however, variation in the response of N fixation to incubation temperature, and variation in the response of MBC and MBN to the time of measurement. Observed changes in pH are often likely to justify variations in the rates of BNF and MB, however in this study they were not shown to be of significance. It is possible, however that biochar will have a positive effect on soil vegetation as it is incorporated into the soil in the long-term. Although this study focuses on BNF and MB, the findings may well have a bearing on the use of biochar as a tool for C sequestration, since amendment with biochar was demonstrated as neither beneficial nor harmful to the soil biota.
Original languageEnglish
Awarding Institution
  • University of Helsinki
Supervisors/Advisors
  • Pumpanen, Jukka, Supervisor
  • Palviainen, Marjo, Supervisor
Thesis sponsors
Publication statusPublished - May 2017
MoE publication typeG2 Master's thesis, polytechnic Master's thesis

Fields of Science

  • 4112 Forestry

Cite this

@phdthesis{56b41db9885c417b976aa5332566a574,
title = "Effect of biochar on microbial biomass and biological nitrogen fixation",
abstract = "Biochar is a product from the pyrolysis of plant derived-biomass and it is intended to be applied to soil given its potential of carbon sequestration and soil fertility improvement. Some studies also suggest that increasing application rate of biochar has a positive feedback on biological nitrogen fixation (BNF) and on soil microbial biomass. However, these effects are not well known for boreal forests. The purpose of this study was to evaluate the effects of different biochar application rates: 0 t ha-1, 5 t ha-1 and 10 t ha-1 on BNF, on microbial biomass carbon and nitrogen (MBC and MBN), and on moss biomass. The field experiment was established in Juupajoki, Southern Finland in young Scots pine stands. The stands were amended with biochar one year before the measurements took place. BNF was determined using acetylene reduction assay (ARA), and microbial biomass was estimated using chloroform fumigation-direct extraction (CFDE). The microbial biomass samples were incubated at the temperatures: 10 °C, 15 °C and 20 °C. Biochar amendment raised soil pH, whereas no differences were verified for BNF, MBC, MBN, nor for moss biomass. There was, however, variation in the response of N fixation to incubation temperature, and variation in the response of MBC and MBN to the time of measurement. Observed changes in pH are often likely to justify variations in the rates of BNF and MB, however in this study they were not shown to be of significance. It is possible, however that biochar will have a positive effect on soil vegetation as it is incorporated into the soil in the long-term. Although this study focuses on BNF and MB, the findings may well have a bearing on the use of biochar as a tool for C sequestration, since amendment with biochar was demonstrated as neither beneficial nor harmful to the soil biota.",
keywords = "4112 Forestry",
author = "{Ribeiro Moreira de Assumpcao}, Christine",
year = "2017",
month = "5",
language = "English",
school = "University of Helsinki",

}

TY - THES

T1 - Effect of biochar on microbial biomass and biological nitrogen fixation

AU - Ribeiro Moreira de Assumpcao, Christine

PY - 2017/5

Y1 - 2017/5

N2 - Biochar is a product from the pyrolysis of plant derived-biomass and it is intended to be applied to soil given its potential of carbon sequestration and soil fertility improvement. Some studies also suggest that increasing application rate of biochar has a positive feedback on biological nitrogen fixation (BNF) and on soil microbial biomass. However, these effects are not well known for boreal forests. The purpose of this study was to evaluate the effects of different biochar application rates: 0 t ha-1, 5 t ha-1 and 10 t ha-1 on BNF, on microbial biomass carbon and nitrogen (MBC and MBN), and on moss biomass. The field experiment was established in Juupajoki, Southern Finland in young Scots pine stands. The stands were amended with biochar one year before the measurements took place. BNF was determined using acetylene reduction assay (ARA), and microbial biomass was estimated using chloroform fumigation-direct extraction (CFDE). The microbial biomass samples were incubated at the temperatures: 10 °C, 15 °C and 20 °C. Biochar amendment raised soil pH, whereas no differences were verified for BNF, MBC, MBN, nor for moss biomass. There was, however, variation in the response of N fixation to incubation temperature, and variation in the response of MBC and MBN to the time of measurement. Observed changes in pH are often likely to justify variations in the rates of BNF and MB, however in this study they were not shown to be of significance. It is possible, however that biochar will have a positive effect on soil vegetation as it is incorporated into the soil in the long-term. Although this study focuses on BNF and MB, the findings may well have a bearing on the use of biochar as a tool for C sequestration, since amendment with biochar was demonstrated as neither beneficial nor harmful to the soil biota.

AB - Biochar is a product from the pyrolysis of plant derived-biomass and it is intended to be applied to soil given its potential of carbon sequestration and soil fertility improvement. Some studies also suggest that increasing application rate of biochar has a positive feedback on biological nitrogen fixation (BNF) and on soil microbial biomass. However, these effects are not well known for boreal forests. The purpose of this study was to evaluate the effects of different biochar application rates: 0 t ha-1, 5 t ha-1 and 10 t ha-1 on BNF, on microbial biomass carbon and nitrogen (MBC and MBN), and on moss biomass. The field experiment was established in Juupajoki, Southern Finland in young Scots pine stands. The stands were amended with biochar one year before the measurements took place. BNF was determined using acetylene reduction assay (ARA), and microbial biomass was estimated using chloroform fumigation-direct extraction (CFDE). The microbial biomass samples were incubated at the temperatures: 10 °C, 15 °C and 20 °C. Biochar amendment raised soil pH, whereas no differences were verified for BNF, MBC, MBN, nor for moss biomass. There was, however, variation in the response of N fixation to incubation temperature, and variation in the response of MBC and MBN to the time of measurement. Observed changes in pH are often likely to justify variations in the rates of BNF and MB, however in this study they were not shown to be of significance. It is possible, however that biochar will have a positive effect on soil vegetation as it is incorporated into the soil in the long-term. Although this study focuses on BNF and MB, the findings may well have a bearing on the use of biochar as a tool for C sequestration, since amendment with biochar was demonstrated as neither beneficial nor harmful to the soil biota.

KW - 4112 Forestry

M3 - Master's thesis

ER -