Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering

Inkeri Kontro, Kirsi Svedström, Filip Dusa, Patrik Ahvenainen, Suvi-Katriina Ruokonen, Joanna Witos, Susanne K. Wiedmer

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of L-alpha-phosphatidylcholine (eggPC) and L-alpha-phosphatidylglycerol (eggPG) (80:20 mol%) or eggPC, eggPG, and cholesterol (60:20:20 mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
Original languageEnglish
JournalChemistry and Physics of Lipids
Volume201
Pages (from-to)59-66
Number of pages8
ISSN0009-3084
DOIs
Publication statusPublished - Dec 2016
MoE publication typeA1 Journal article-refereed

Fields of Science

  • 114 Physical sciences
  • 116 Chemical sciences

Cite this

@article{ce95cc89e3fb43d4b0381003c3146741,
title = "Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering",
abstract = "The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of L-alpha-phosphatidylcholine (eggPC) and L-alpha-phosphatidylglycerol (eggPG) (80:20 mol{\%}) or eggPC, eggPG, and cholesterol (60:20:20 mol{\%}) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes. (C) 2016 Elsevier Ireland Ltd. All rights reserved.",
keywords = "114 Physical sciences, 116 Chemical sciences",
author = "Inkeri Kontro and Kirsi Svedstr{\"o}m and Filip Dusa and Patrik Ahvenainen and Suvi-Katriina Ruokonen and Joanna Witos and Wiedmer, {Susanne K.}",
year = "2016",
month = "12",
doi = "10.1016/j.chemphyslip.2016.11.003",
language = "English",
volume = "201",
pages = "59--66",
journal = "Chemistry and Physics of Lipids",
issn = "0009-3084",
publisher = "ELSEVIER IRELAND LTD",

}

Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering. / Kontro, Inkeri; Svedström, Kirsi; Dusa, Filip; Ahvenainen, Patrik; Ruokonen, Suvi-Katriina; Witos, Joanna; Wiedmer, Susanne K.

In: Chemistry and Physics of Lipids, Vol. 201, 12.2016, p. 59-66.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering

AU - Kontro, Inkeri

AU - Svedström, Kirsi

AU - Dusa, Filip

AU - Ahvenainen, Patrik

AU - Ruokonen, Suvi-Katriina

AU - Witos, Joanna

AU - Wiedmer, Susanne K.

PY - 2016/12

Y1 - 2016/12

N2 - The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of L-alpha-phosphatidylcholine (eggPC) and L-alpha-phosphatidylglycerol (eggPG) (80:20 mol%) or eggPC, eggPG, and cholesterol (60:20:20 mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes. (C) 2016 Elsevier Ireland Ltd. All rights reserved.

AB - The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of L-alpha-phosphatidylcholine (eggPC) and L-alpha-phosphatidylglycerol (eggPG) (80:20 mol%) or eggPC, eggPG, and cholesterol (60:20:20 mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes. (C) 2016 Elsevier Ireland Ltd. All rights reserved.

KW - 114 Physical sciences

KW - 116 Chemical sciences

U2 - 10.1016/j.chemphyslip.2016.11.003

DO - 10.1016/j.chemphyslip.2016.11.003

M3 - Article

VL - 201

SP - 59

EP - 66

JO - Chemistry and Physics of Lipids

JF - Chemistry and Physics of Lipids

SN - 0009-3084

ER -