Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning

J-B. Feret, G. le Maire, S. Jay, D. Berveiller, R. Bendoula, G. Hmimina, A. Cheraiet, J. C. Oliveira, F. J. Ponzoni, T. Solanki, F. de Boissieu, J. Chave, Y. Nouvellon, A. Porcar-Castell, C. Proisy, K. Soudani, J-P. Gastellu-Etchegorry, M-J. Lefevre-Fonollosa

Research output: Contribution to journalArticleScientificpeer-review

Original languageEnglish
Article number110959
JournalRemote Sensing of Environment
Volume231
Number of pages14
ISSN0034-4257
DOIs
Publication statusPublished - 15 Sept 2019
MoE publication typeA1 Journal article-refereed

Fields of Science

  • Biophysical properties
  • Leaf spectroscopy
  • EWT
  • LMA
  • Radiative transfer model
  • Support vector machine
  • Vegetation
  • FUEL MOISTURE-CONTENT
  • DRY-MATTER CONTENT
  • RELATIVE GROWTH-RATE
  • PROSPECT MODEL
  • FUNCTIONAL TRAITS
  • HYPERSPECTRAL INDEXES
  • CONCEPTUAL-FRAMEWORK
  • SPECTRAL INDEXES
  • BROAD-LEAF
  • REFLECTANCE
  • 1172 Environmental sciences
  • 4112 Forestry

Cite this