Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The impact of aerosols on climate and air quality remains poorly understood due to multiple factors. One of the current limitations is the incomplete understanding of the contribution of oxygenated products, generated from the gas-phase oxidation of volatile organic compounds (VOCs), to aerosol formation. Indeed, atmospheric gaseous chemical processes yield thousands of (highly) oxygenated species, spanning a wide range of chemical formulas, functional groups and, consequently, volatilities. While recent mass spectrometric developments have allowed extensive on-line detection of a myriad of oxygenated organic species, playing a central role in atmospheric chemistry, the detailed quantification and characterization of this diverse group of compounds remains extremely challenging. To address this challenge, we evaluated the capability of current state-of-the-art mass spectrometers equipped with different chemical ionization sources to detect the oxidation products formed from alpha-Pinene ozonolysis under various conditions. Five different mass spectrometers were deployed simultaneously for a chamber study. Two chemical ionization atmospheric pressure interface time-of-flight mass spectrometers (CI-APi-TOF) with nitrate and amine reagent ion chemistries and an iodide chemical ionization time-of-flight mass spectrometer (TOF-CIMS) were used. Additionally, a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF 8000) and a new "vocus" PTR-TOF were also deployed. In the current study, we compared around 1000 different compounds between each of the five instruments, with the aim of determining which oxygenated VOCs (OVOCs) the different methods were sensitive to and identifying regions where two or more instruments were able to detect species with similar molecular formulae. We utilized a large variability in conditions (including different VOCs, ozone, NOx and OH scavenger concentrations) in our newly constructed atmospheric simulation chamber for a comprehensive correlation analysis between all instruments. This analysis, combined with estimated concentrations for identified molecules in each instrument, yielded both expected and surprising results. As anticipated based on earlier studies, the PTR instruments were the only ones able to measure the precursor VOC, the iodide TOF-CIMS efficiently detected many semi-volatile organic compounds (SVOCs) with three to five oxygen atoms, and the nitrate CI-APi-TOF was mainly sensitive to highly oxygenated organic (O > 5) molecules (HOMs). In addition, the vocus showed good agreement with the iodide TOF-CIMS for the SVOC, including a range of organonitrates. The amine CI-APi-TOF agreed well with the nitrate CI-APi-TOF for HOM dimers. However, the loadings in our experiments caused the amine reagent ion to be considerably depleted, causing nonlinear responses for monomers. This study explores and highlights both benefits and limitations of currently available chemical ionization mass spectrometry instrumentation for characterizing the wide variety of OVOCs in the atmosphere. While specifically shown for the case of alpha-Pinene ozonolysis, we expect our general findings to also be valid for a wide range of other VOC-oxidant systems. As discussed in this study, no single instrument configuration can be deemed better or worse than the others, as the optimal instrument for a particular study ultimately depends on the specific target of the study.
Original languageEnglish
JournalAtmospheric Measurement Techniques
Volume12
Issue number4
Pages (from-to)2403-2421
Number of pages19
ISSN1867-1381
DOIs
Publication statusPublished - 17 Apr 2019
MoE publication typeA1 Journal article-refereed

Fields of Science

  • OXIDIZED RO2 RADICALS
  • GAS-PHASE OZONOLYSIS
  • CYCLOHEXENE OZONOLYSIS
  • MASS-SPECTROMETER
  • PARTICLE FORMATION
  • SULFURIC-ACID
  • PRODUCTS
  • AEROSOL
  • IMPACT
  • MOLECULES
  • 114 Physical sciences

Cite this

@article{f54a6b031477453387cd6e1c661a39d7,
title = "Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species",
abstract = "The impact of aerosols on climate and air quality remains poorly understood due to multiple factors. One of the current limitations is the incomplete understanding of the contribution of oxygenated products, generated from the gas-phase oxidation of volatile organic compounds (VOCs), to aerosol formation. Indeed, atmospheric gaseous chemical processes yield thousands of (highly) oxygenated species, spanning a wide range of chemical formulas, functional groups and, consequently, volatilities. While recent mass spectrometric developments have allowed extensive on-line detection of a myriad of oxygenated organic species, playing a central role in atmospheric chemistry, the detailed quantification and characterization of this diverse group of compounds remains extremely challenging. To address this challenge, we evaluated the capability of current state-of-the-art mass spectrometers equipped with different chemical ionization sources to detect the oxidation products formed from alpha-Pinene ozonolysis under various conditions. Five different mass spectrometers were deployed simultaneously for a chamber study. Two chemical ionization atmospheric pressure interface time-of-flight mass spectrometers (CI-APi-TOF) with nitrate and amine reagent ion chemistries and an iodide chemical ionization time-of-flight mass spectrometer (TOF-CIMS) were used. Additionally, a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF 8000) and a new {"}vocus{"} PTR-TOF were also deployed. In the current study, we compared around 1000 different compounds between each of the five instruments, with the aim of determining which oxygenated VOCs (OVOCs) the different methods were sensitive to and identifying regions where two or more instruments were able to detect species with similar molecular formulae. We utilized a large variability in conditions (including different VOCs, ozone, NOx and OH scavenger concentrations) in our newly constructed atmospheric simulation chamber for a comprehensive correlation analysis between all instruments. This analysis, combined with estimated concentrations for identified molecules in each instrument, yielded both expected and surprising results. As anticipated based on earlier studies, the PTR instruments were the only ones able to measure the precursor VOC, the iodide TOF-CIMS efficiently detected many semi-volatile organic compounds (SVOCs) with three to five oxygen atoms, and the nitrate CI-APi-TOF was mainly sensitive to highly oxygenated organic (O > 5) molecules (HOMs). In addition, the vocus showed good agreement with the iodide TOF-CIMS for the SVOC, including a range of organonitrates. The amine CI-APi-TOF agreed well with the nitrate CI-APi-TOF for HOM dimers. However, the loadings in our experiments caused the amine reagent ion to be considerably depleted, causing nonlinear responses for monomers. This study explores and highlights both benefits and limitations of currently available chemical ionization mass spectrometry instrumentation for characterizing the wide variety of OVOCs in the atmosphere. While specifically shown for the case of alpha-Pinene ozonolysis, we expect our general findings to also be valid for a wide range of other VOC-oxidant systems. As discussed in this study, no single instrument configuration can be deemed better or worse than the others, as the optimal instrument for a particular study ultimately depends on the specific target of the study.",
keywords = "OXIDIZED RO2 RADICALS, GAS-PHASE OZONOLYSIS, CYCLOHEXENE OZONOLYSIS, MASS-SPECTROMETER, PARTICLE FORMATION, SULFURIC-ACID, PRODUCTS, AEROSOL, IMPACT, MOLECULES, 114 Physical sciences",
author = "Matthieu Riva and Pekka Rantala and Krechmer, {Jordan E.} and Otso Per{\"a}kyl{\"a} and Yanjun Zhang and Liine Heikkinen and Olga Garmash and Chao Yan and Markku Kulmala and Douglas Worsnop and Mikael Ehn",
year = "2019",
month = "4",
day = "17",
doi = "10.5194/amt-12-2403-2019",
language = "English",
volume = "12",
pages = "2403--2421",
journal = "Atmospheric Measurement Techniques",
issn = "1867-1381",
publisher = "COPERNICUS GESELLSCHAFT MBH",
number = "4",

}

TY - JOUR

T1 - Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species

AU - Riva, Matthieu

AU - Rantala, Pekka

AU - Krechmer, Jordan E.

AU - Peräkylä, Otso

AU - Zhang, Yanjun

AU - Heikkinen, Liine

AU - Garmash, Olga

AU - Yan, Chao

AU - Kulmala, Markku

AU - Worsnop, Douglas

AU - Ehn, Mikael

PY - 2019/4/17

Y1 - 2019/4/17

N2 - The impact of aerosols on climate and air quality remains poorly understood due to multiple factors. One of the current limitations is the incomplete understanding of the contribution of oxygenated products, generated from the gas-phase oxidation of volatile organic compounds (VOCs), to aerosol formation. Indeed, atmospheric gaseous chemical processes yield thousands of (highly) oxygenated species, spanning a wide range of chemical formulas, functional groups and, consequently, volatilities. While recent mass spectrometric developments have allowed extensive on-line detection of a myriad of oxygenated organic species, playing a central role in atmospheric chemistry, the detailed quantification and characterization of this diverse group of compounds remains extremely challenging. To address this challenge, we evaluated the capability of current state-of-the-art mass spectrometers equipped with different chemical ionization sources to detect the oxidation products formed from alpha-Pinene ozonolysis under various conditions. Five different mass spectrometers were deployed simultaneously for a chamber study. Two chemical ionization atmospheric pressure interface time-of-flight mass spectrometers (CI-APi-TOF) with nitrate and amine reagent ion chemistries and an iodide chemical ionization time-of-flight mass spectrometer (TOF-CIMS) were used. Additionally, a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF 8000) and a new "vocus" PTR-TOF were also deployed. In the current study, we compared around 1000 different compounds between each of the five instruments, with the aim of determining which oxygenated VOCs (OVOCs) the different methods were sensitive to and identifying regions where two or more instruments were able to detect species with similar molecular formulae. We utilized a large variability in conditions (including different VOCs, ozone, NOx and OH scavenger concentrations) in our newly constructed atmospheric simulation chamber for a comprehensive correlation analysis between all instruments. This analysis, combined with estimated concentrations for identified molecules in each instrument, yielded both expected and surprising results. As anticipated based on earlier studies, the PTR instruments were the only ones able to measure the precursor VOC, the iodide TOF-CIMS efficiently detected many semi-volatile organic compounds (SVOCs) with three to five oxygen atoms, and the nitrate CI-APi-TOF was mainly sensitive to highly oxygenated organic (O > 5) molecules (HOMs). In addition, the vocus showed good agreement with the iodide TOF-CIMS for the SVOC, including a range of organonitrates. The amine CI-APi-TOF agreed well with the nitrate CI-APi-TOF for HOM dimers. However, the loadings in our experiments caused the amine reagent ion to be considerably depleted, causing nonlinear responses for monomers. This study explores and highlights both benefits and limitations of currently available chemical ionization mass spectrometry instrumentation for characterizing the wide variety of OVOCs in the atmosphere. While specifically shown for the case of alpha-Pinene ozonolysis, we expect our general findings to also be valid for a wide range of other VOC-oxidant systems. As discussed in this study, no single instrument configuration can be deemed better or worse than the others, as the optimal instrument for a particular study ultimately depends on the specific target of the study.

AB - The impact of aerosols on climate and air quality remains poorly understood due to multiple factors. One of the current limitations is the incomplete understanding of the contribution of oxygenated products, generated from the gas-phase oxidation of volatile organic compounds (VOCs), to aerosol formation. Indeed, atmospheric gaseous chemical processes yield thousands of (highly) oxygenated species, spanning a wide range of chemical formulas, functional groups and, consequently, volatilities. While recent mass spectrometric developments have allowed extensive on-line detection of a myriad of oxygenated organic species, playing a central role in atmospheric chemistry, the detailed quantification and characterization of this diverse group of compounds remains extremely challenging. To address this challenge, we evaluated the capability of current state-of-the-art mass spectrometers equipped with different chemical ionization sources to detect the oxidation products formed from alpha-Pinene ozonolysis under various conditions. Five different mass spectrometers were deployed simultaneously for a chamber study. Two chemical ionization atmospheric pressure interface time-of-flight mass spectrometers (CI-APi-TOF) with nitrate and amine reagent ion chemistries and an iodide chemical ionization time-of-flight mass spectrometer (TOF-CIMS) were used. Additionally, a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF 8000) and a new "vocus" PTR-TOF were also deployed. In the current study, we compared around 1000 different compounds between each of the five instruments, with the aim of determining which oxygenated VOCs (OVOCs) the different methods were sensitive to and identifying regions where two or more instruments were able to detect species with similar molecular formulae. We utilized a large variability in conditions (including different VOCs, ozone, NOx and OH scavenger concentrations) in our newly constructed atmospheric simulation chamber for a comprehensive correlation analysis between all instruments. This analysis, combined with estimated concentrations for identified molecules in each instrument, yielded both expected and surprising results. As anticipated based on earlier studies, the PTR instruments were the only ones able to measure the precursor VOC, the iodide TOF-CIMS efficiently detected many semi-volatile organic compounds (SVOCs) with three to five oxygen atoms, and the nitrate CI-APi-TOF was mainly sensitive to highly oxygenated organic (O > 5) molecules (HOMs). In addition, the vocus showed good agreement with the iodide TOF-CIMS for the SVOC, including a range of organonitrates. The amine CI-APi-TOF agreed well with the nitrate CI-APi-TOF for HOM dimers. However, the loadings in our experiments caused the amine reagent ion to be considerably depleted, causing nonlinear responses for monomers. This study explores and highlights both benefits and limitations of currently available chemical ionization mass spectrometry instrumentation for characterizing the wide variety of OVOCs in the atmosphere. While specifically shown for the case of alpha-Pinene ozonolysis, we expect our general findings to also be valid for a wide range of other VOC-oxidant systems. As discussed in this study, no single instrument configuration can be deemed better or worse than the others, as the optimal instrument for a particular study ultimately depends on the specific target of the study.

KW - OXIDIZED RO2 RADICALS

KW - GAS-PHASE OZONOLYSIS

KW - CYCLOHEXENE OZONOLYSIS

KW - MASS-SPECTROMETER

KW - PARTICLE FORMATION

KW - SULFURIC-ACID

KW - PRODUCTS

KW - AEROSOL

KW - IMPACT

KW - MOLECULES

KW - 114 Physical sciences

U2 - 10.5194/amt-12-2403-2019

DO - 10.5194/amt-12-2403-2019

M3 - Article

VL - 12

SP - 2403

EP - 2421

JO - Atmospheric Measurement Techniques

JF - Atmospheric Measurement Techniques

SN - 1867-1381

IS - 4

ER -