Expression of SLC26A3, CFTR and NHE3 in the human male reproductive tract: role in male subfertility caused by congenital chloride diarrhoea

Satu Hihnala, Minna Kujala, Jorma Toppari, Juha Kere, Christer Holmberg, Pia Höglund

Research output: Contribution to journalArticleScientificpeer-review


Congenital chloride diarrhoea (CLD) is a rare inherited disease caused by mutations in the solute carrier family 26 member 3 (SLC26A3) gene. Disruption of intestinal Cl-/HCO3- exchange causes watery Cl- rich diarrhoea from birth, and recently male subfertility was observed as a novel manifestation. Expression of SLC26A3, together with interacting proteins cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/H+ exchanger 3 (NHE3), was studied using immunohistochemistry in the testis (n = 2) and efferent ducts (ED) (n = 1) of patients with CLD (V317del genotype) and in the testis and epididymis (n = 11), seminal vesicle (n = 9) and prostate (n = 4) of the controls. SLC26A3 was immunolocalized in the head of the elongating spermatids (stages III-VI) and CFTR in the elongating spermatids (stages III and IV) and pachytene (stages III-V) and diplotene spermatocytes. In the non-ciliated cells of the ED, apical expression of all three proteins was observed, but only SLC26A3 and CFTR were detected on the luminal border of the apical mitochondria-rich cells (AMRC) of the ductus epididymis and in the epithelium of the seminal vesicle. Only CFTR was present in the epithelium of the prostatic duct. In the patient with CLD, the expression of both SLC26A3 and CFTR was absent in the ED, but testicular expression was identical to that of the controls. These results suggest a primary role for SLC26A3 in male reproduction. Tissue-specific co-expression with CFTR and NHE3 supports diverse functions of SLC26A3 and may have an impact on pathophysiology of male subfertility both in CLD and in cystic fibrosis (CF), as well as spermatoceles.
Original languageEnglish
JournalMolecular Human Reproduction
Issue number2
Pages (from-to)107-111
Number of pages5
Publication statusPublished - 2006
MoE publication typeA1 Journal article-refereed

Cite this