Gut microbiota can utilize prebiotic birch glucuronoxylan in production of short-chain fatty acids in rats

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Birch-derived glucuronoxylan (GX)-rich hemicellulose extract is an abundantly available by-product of the forest industry. It has multifunctional food stabilizing properties, and is rich in fiber and polyphenols. Here, we studied its effects on colonic metabolism and gut microbiota in healthy rats. Male and female Wistar rats (n = 42) were fed AIN-93G-based diets with 10% (w/w) of either cellulose (control), a polyphenol and GX-rich extract (GXpoly), or a highly purified GX-rich extract (pureGX) for four weeks. Both the GXpoly and pureGX diets resulted in changes on the gut microbiota, especially in a higher abundance of Bifidobacteriaceae than the cellulose containing diet (p < 0.001). This coincided with higher concentrations of microbial metabolites in the luminal contents of the GX-fed than control rats, such as total short-chain fatty acids (SCFAs) (p < 0.001), acetate (p < 0.001), and N-nitroso compounds (NOCs) (p = 0.001). The difference in the concentration of NOCs was not seen when adjusted with fecal weight. GX supplementation supported the normal growth of the rats. Our results indicate that GXpoly and pureGX can favorably affect colonic metabolism and the gut microbiota. They have high potential to be used as prebiotic stabilizers to support more ecologically sustainable food production.

Original languageEnglish
JournalFood & Function
Volume13
Issue number6
Pages (from-to)3746-3759
Number of pages14
ISSN2042-6496
DOIs
Publication statusPublished - 21 Mar 2022
MoE publication typeA1 Journal article-refereed

Bibliographical note

Correction: Volume13, Issue 8
Page: 4770-4770
DOI: 10.1039/d2fo90028a
Published: APR 20 2022

Fields of Science

  • 416 Food Science
  • 3143 Nutrition
  • BREWERS SPENT GRAIN
  • N-NITROSO COMPOUNDS
  • XYLO-OLIGOSACCHARIDES
  • DIETARY FIBER
  • ENDOGENOUS FORMATION
  • MAMMALIAN LIGNANS
  • RED MEAT
  • FERMENTATION
  • EXTRACTION
  • BACTERIA

Cite this