Kinetic theory and thermalization of weakly interacting fermions

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Abstract

Weakly interacting quantum fluids allow for a natural kinetic theory description which takes into account the fermionic or bosonic nature of the interacting particles. In the simplest cases, one arrives at the Boltzmann–Nordheim equations for the reduced density matrix of the fluid. We discuss here two related topics: the kinetic theory of the fermionic Hubbard model, in which conservation of total spin results in an additional Vlasov-type term in the Boltzmann equation, and the relation between kinetic theory and thermalization. © Springer Nature Switzerland AG 2018.
Original languageEnglish
Title of host publicationMacroscopic Limits of Quantum Systems : Munich, Germany, March 30 - April 1, 2017
EditorsDaniela Cadamuro, Maximilian Duell, Wojciech Dybalski, Sergio Simonella
Number of pages28
Place of PublicationCham
PublisherSpringer
Publication date2018
Pages1-28
ISBN (Print)978-3-030-01601-2
ISBN (Electronic)978-3-030-01602-9
DOIs
Publication statusPublished - 2018
MoE publication typeA4 Article in conference proceedings
EventMacroscopic Limits of Quantum Systems - Technische Universität München, Munich, Germany
Duration: 30 Mar 20171 Apr 2017
https://www-m5.ma.tum.de/Allgemeines/MacroscopicLimitsWorkshop

Publication series

NameSpringer Proceedings in Mathematics and Statistics
Volume270
ISSN (Print)2194-1009
ISSN (Electronic)2194-1017

Fields of Science

  • Boltzmann equation
  • Kinetics
  • Quantum chemistry
  • Quantum optics
  • Vlasov equation, Boltzmann
  • Interacting fermions
  • Interacting particles
  • Quantum fluids
  • Reduced-density matrix
  • Thermalization, Kinetic theory
  • 111 Mathematics

Cite this

Lukkarinen, J. (2018). Kinetic theory and thermalization of weakly interacting fermions. In D. Cadamuro, M. Duell, W. Dybalski, & S. Simonella (Eds.), Macroscopic Limits of Quantum Systems : Munich, Germany, March 30 - April 1, 2017 (pp. 1-28). (Springer Proceedings in Mathematics and Statistics; Vol. 270). Cham: Springer. https://doi.org/10.1007/978-3-030-01602-9_1