Label-free serum proteomics and multivariate data analysis identifies biomarkers and expression trends that differentiate Intraductal papillary mucinous neoplasia from pancreatic adenocarcinoma and healthy controls

Mayank Saraswat, Heini Nieminen, Sakari Joenväärä, Tiialotta Tohmola, Hanna Seppänen, Ari Ristimäki, Caj Haglund, Risto Renkonen

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Background
Intraductal Papillary Mucinous Neoplasia (IPMN) are potentially malignant cystic tumors of the pancreas. IPMN can progress from low to moderate to high grade dysplasia and further to IPMN associated carcinoma. Often the difference between benign and malignant nature of the IPMN is not clear preoperatively. We aim to elucidate molecular expression patterns of various grades of IPMN and pancreatic carcinoma. Additionally we suggest potential novel biomarkers to differentiate IPMN from healthy individuals and pancreatic carcinoma to enable early detection as well as help in differential diagnosis in future.

Methods
We have performed retrospective label-free proteomic analysis of the serum samples from 44 patients with various grades of benign IPMN or IPMN associated carcinoma and 11 healthy controls. Proteomic data was further analyzed by various multivariate statistical methods. Four groups of samples (low-grade, high-grade IPMN, pancreatic carcinoma and age- and sex-matched healthy controls) were compared with ANOVA. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA) modeling gave S-plot for feature selection. Stringently selected potential markers were further evaluated with ROC curve analysis and area under the curve was calculated. Differentially expressed proteins were used for pathway analysis. Linear trend analysis (Mann Kendall test) was used for identifying significant increasing or decreasing trends from healthy-low grade-high grade IPMN-pancreatic carcinoma.

Results
Based on protein expression (436 proteins quantified), PCA separated most sample groups from each other. S-Plot selected biomarker panels with moderate to very high AUC values for differentiating controls from Low-, High-Grade IPMN and carcinoma. Linear trend analysis identified 12 proteins which were consistently increasing or decreasing trend among the groups. We found potential biomarkers to differentiate healthy controls from different degrees of dysplasia and pancreatic carcinoma. These biomarkers can classify IPMN, carcinoma and healthy controls from each other which is an unmet clinical need. Data are available via ProteomeXchange with identifier PXD009139.

Conclusion
Kininogen-1 was able to differentiate healthy persons from low and high-grade IPMN. Retinol binding protein-4 could classify the low-grade IPMN from pancreatic carcinoma. Twelve proteins including apolipoproteins and complement proteins had significantly increasing or decreasing trends from healthy to low to high-grade IPMN to pancreatic carcinoma.
Original languageEnglish
Article number6
JournalTranslational Medicine Communications
Volume4
Number of pages12
ISSN2396-832X
DOIs
Publication statusPublished - 14 May 2019
MoE publication typeA1 Journal article-refereed

Fields of Science

  • 3111 Biomedicine

Cite this

@article{3171419f2e2e40fa9910a2f4e33adf12,
title = "Label-free serum proteomics and multivariate data analysis identifies biomarkers and expression trends that differentiate Intraductal papillary mucinous neoplasia from pancreatic adenocarcinoma and healthy controls",
abstract = "BackgroundIntraductal Papillary Mucinous Neoplasia (IPMN) are potentially malignant cystic tumors of the pancreas. IPMN can progress from low to moderate to high grade dysplasia and further to IPMN associated carcinoma. Often the difference between benign and malignant nature of the IPMN is not clear preoperatively. We aim to elucidate molecular expression patterns of various grades of IPMN and pancreatic carcinoma. Additionally we suggest potential novel biomarkers to differentiate IPMN from healthy individuals and pancreatic carcinoma to enable early detection as well as help in differential diagnosis in future.MethodsWe have performed retrospective label-free proteomic analysis of the serum samples from 44 patients with various grades of benign IPMN or IPMN associated carcinoma and 11 healthy controls. Proteomic data was further analyzed by various multivariate statistical methods. Four groups of samples (low-grade, high-grade IPMN, pancreatic carcinoma and age- and sex-matched healthy controls) were compared with ANOVA. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA) modeling gave S-plot for feature selection. Stringently selected potential markers were further evaluated with ROC curve analysis and area under the curve was calculated. Differentially expressed proteins were used for pathway analysis. Linear trend analysis (Mann Kendall test) was used for identifying significant increasing or decreasing trends from healthy-low grade-high grade IPMN-pancreatic carcinoma.ResultsBased on protein expression (436 proteins quantified), PCA separated most sample groups from each other. S-Plot selected biomarker panels with moderate to very high AUC values for differentiating controls from Low-, High-Grade IPMN and carcinoma. Linear trend analysis identified 12 proteins which were consistently increasing or decreasing trend among the groups. We found potential biomarkers to differentiate healthy controls from different degrees of dysplasia and pancreatic carcinoma. These biomarkers can classify IPMN, carcinoma and healthy controls from each other which is an unmet clinical need. Data are available via ProteomeXchange with identifier PXD009139.ConclusionKininogen-1 was able to differentiate healthy persons from low and high-grade IPMN. Retinol binding protein-4 could classify the low-grade IPMN from pancreatic carcinoma. Twelve proteins including apolipoproteins and complement proteins had significantly increasing or decreasing trends from healthy to low to high-grade IPMN to pancreatic carcinoma.",
keywords = "3111 Biomedicine",
author = "Mayank Saraswat and Heini Nieminen and Sakari Joenv{\"a}{\"a}r{\"a} and Tiialotta Tohmola and Hanna Sepp{\"a}nen and Ari Ristim{\"a}ki and Caj Haglund and Risto Renkonen",
year = "2019",
month = "5",
day = "14",
doi = "10.1186/s41231-019-0037-4",
language = "English",
volume = "4",
journal = "Translational Medicine Communications",
issn = "2396-832X",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Label-free serum proteomics and multivariate data analysis identifies biomarkers and expression trends that differentiate Intraductal papillary mucinous neoplasia from pancreatic adenocarcinoma and healthy controls

AU - Saraswat, Mayank

AU - Nieminen, Heini

AU - Joenväärä, Sakari

AU - Tohmola, Tiialotta

AU - Seppänen, Hanna

AU - Ristimäki, Ari

AU - Haglund, Caj

AU - Renkonen, Risto

PY - 2019/5/14

Y1 - 2019/5/14

N2 - BackgroundIntraductal Papillary Mucinous Neoplasia (IPMN) are potentially malignant cystic tumors of the pancreas. IPMN can progress from low to moderate to high grade dysplasia and further to IPMN associated carcinoma. Often the difference between benign and malignant nature of the IPMN is not clear preoperatively. We aim to elucidate molecular expression patterns of various grades of IPMN and pancreatic carcinoma. Additionally we suggest potential novel biomarkers to differentiate IPMN from healthy individuals and pancreatic carcinoma to enable early detection as well as help in differential diagnosis in future.MethodsWe have performed retrospective label-free proteomic analysis of the serum samples from 44 patients with various grades of benign IPMN or IPMN associated carcinoma and 11 healthy controls. Proteomic data was further analyzed by various multivariate statistical methods. Four groups of samples (low-grade, high-grade IPMN, pancreatic carcinoma and age- and sex-matched healthy controls) were compared with ANOVA. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA) modeling gave S-plot for feature selection. Stringently selected potential markers were further evaluated with ROC curve analysis and area under the curve was calculated. Differentially expressed proteins were used for pathway analysis. Linear trend analysis (Mann Kendall test) was used for identifying significant increasing or decreasing trends from healthy-low grade-high grade IPMN-pancreatic carcinoma.ResultsBased on protein expression (436 proteins quantified), PCA separated most sample groups from each other. S-Plot selected biomarker panels with moderate to very high AUC values for differentiating controls from Low-, High-Grade IPMN and carcinoma. Linear trend analysis identified 12 proteins which were consistently increasing or decreasing trend among the groups. We found potential biomarkers to differentiate healthy controls from different degrees of dysplasia and pancreatic carcinoma. These biomarkers can classify IPMN, carcinoma and healthy controls from each other which is an unmet clinical need. Data are available via ProteomeXchange with identifier PXD009139.ConclusionKininogen-1 was able to differentiate healthy persons from low and high-grade IPMN. Retinol binding protein-4 could classify the low-grade IPMN from pancreatic carcinoma. Twelve proteins including apolipoproteins and complement proteins had significantly increasing or decreasing trends from healthy to low to high-grade IPMN to pancreatic carcinoma.

AB - BackgroundIntraductal Papillary Mucinous Neoplasia (IPMN) are potentially malignant cystic tumors of the pancreas. IPMN can progress from low to moderate to high grade dysplasia and further to IPMN associated carcinoma. Often the difference between benign and malignant nature of the IPMN is not clear preoperatively. We aim to elucidate molecular expression patterns of various grades of IPMN and pancreatic carcinoma. Additionally we suggest potential novel biomarkers to differentiate IPMN from healthy individuals and pancreatic carcinoma to enable early detection as well as help in differential diagnosis in future.MethodsWe have performed retrospective label-free proteomic analysis of the serum samples from 44 patients with various grades of benign IPMN or IPMN associated carcinoma and 11 healthy controls. Proteomic data was further analyzed by various multivariate statistical methods. Four groups of samples (low-grade, high-grade IPMN, pancreatic carcinoma and age- and sex-matched healthy controls) were compared with ANOVA. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA) modeling gave S-plot for feature selection. Stringently selected potential markers were further evaluated with ROC curve analysis and area under the curve was calculated. Differentially expressed proteins were used for pathway analysis. Linear trend analysis (Mann Kendall test) was used for identifying significant increasing or decreasing trends from healthy-low grade-high grade IPMN-pancreatic carcinoma.ResultsBased on protein expression (436 proteins quantified), PCA separated most sample groups from each other. S-Plot selected biomarker panels with moderate to very high AUC values for differentiating controls from Low-, High-Grade IPMN and carcinoma. Linear trend analysis identified 12 proteins which were consistently increasing or decreasing trend among the groups. We found potential biomarkers to differentiate healthy controls from different degrees of dysplasia and pancreatic carcinoma. These biomarkers can classify IPMN, carcinoma and healthy controls from each other which is an unmet clinical need. Data are available via ProteomeXchange with identifier PXD009139.ConclusionKininogen-1 was able to differentiate healthy persons from low and high-grade IPMN. Retinol binding protein-4 could classify the low-grade IPMN from pancreatic carcinoma. Twelve proteins including apolipoproteins and complement proteins had significantly increasing or decreasing trends from healthy to low to high-grade IPMN to pancreatic carcinoma.

KW - 3111 Biomedicine

U2 - 10.1186/s41231-019-0037-4

DO - 10.1186/s41231-019-0037-4

M3 - Article

VL - 4

JO - Translational Medicine Communications

JF - Translational Medicine Communications

SN - 2396-832X

M1 - 6

ER -