Local seismic network for monitoring of a potential nuclear power plant area

Research output: Contribution to journalArticleScientificpeer-review

Abstract

This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ∼ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = −0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ∼ −0.1) within 25 km radius and 5 (ML ≥ ∼−0.1 to ∼0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1–2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1–2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and location capability of the network.
Original languageEnglish
JournalJournal of Seismology
Volume20
Issue number2
Pages (from-to)397-417
Number of pages21
ISSN1383-4649
DOIs
Publication statusPublished - Apr 2016
MoE publication typeA1 Journal article-refereed

Fields of Science

  • 1171 Geosciences

Cite this

@article{40195221e9db41bc9495eb068e3bc22b,
title = "Local seismic network for monitoring of a potential nuclear power plant area",
abstract = "This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyh{\"a}joki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyh{\"a}joki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ∼ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = −0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyh{\"a}joki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ∼ −0.1) within 25 km radius and 5 (ML ≥ ∼−0.1 to ∼0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1–2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1–2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and location capability of the network.",
keywords = "1171 Geosciences",
author = "Tiira, {Timo Ensio} and Uski, {Marja Riitta} and Kortstr{\"o}m, {Jari Tapio} and Kaisko, {Outi Sinikka} and Annakaisa Korja",
year = "2016",
month = "4",
doi = "10.1007/s10950-015-9534-8",
language = "English",
volume = "20",
pages = "397--417",
journal = "Journal of Seismology",
issn = "1383-4649",
publisher = "Springer Netherlands",
number = "2",

}

Local seismic network for monitoring of a potential nuclear power plant area. / Tiira, Timo Ensio; Uski, Marja Riitta; Kortström, Jari Tapio; Kaisko, Outi Sinikka; Korja, Annakaisa.

In: Journal of Seismology, Vol. 20, No. 2, 04.2016, p. 397-417.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - Local seismic network for monitoring of a potential nuclear power plant area

AU - Tiira, Timo Ensio

AU - Uski, Marja Riitta

AU - Kortström, Jari Tapio

AU - Kaisko, Outi Sinikka

AU - Korja, Annakaisa

PY - 2016/4

Y1 - 2016/4

N2 - This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ∼ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = −0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ∼ −0.1) within 25 km radius and 5 (ML ≥ ∼−0.1 to ∼0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1–2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1–2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and location capability of the network.

AB - This study presents a plan for seismic monitoring of a region around a potential nuclear power plant. Seismic monitoring is needed to evaluate seismic risk. The International Atomic Energy Agency has set guidelines on seismic hazard evaluation and monitoring of such areas. According to these guidelines, we have made a plan for a local network of seismic stations to collect data for seismic source characterization and seismotectonic interpretations, as well as to monitor seismic activity and natural hazards. The detection and location capability of the network were simulated using different station configurations by computing spatial azimuthal coverages and detection threshold magnitudes. Background noise conditions around Pyhäjoki were analyzed by comparing data from different stations. The annual number of microearthquakes that should be detected with a dense local network centered around Pyhäjoki was estimated. The network should be dense enough to fulfill the requirements of azimuthal coverage better than 180° and automatic event location capability down to ML ∼ 0 within a distance of 25 km from the site. A network of 10 stations should be enough to reach these goals. With this setup, the detection threshold magnitudes are estimated to be ML = −0.1 and ML = 0.1 within a radius of 25 and 50 km from Pyhäjoki, respectively. The annual number of earthquakes detected by the network is estimated to be 2 (ML ≥ ∼ −0.1) within 25 km radius and 5 (ML ≥ ∼−0.1 to ∼0.1) within 50 km radius. The location accuracy within 25 km radius is estimated to be 1–2 and 4 km for horizontal coordinates and depth, respectively. Thus, the network is dense enough to map out capable faults with horizontal accuracy of 1–2 km within 25 km radius of the site. The estimation is based on the location accuracies of five existing networks in northern Europe. Local factors, such as seismic noise sources, geology and infrastructure might limit the station configuration and detection and location capability of the network.

KW - 1171 Geosciences

U2 - 10.1007/s10950-015-9534-8

DO - 10.1007/s10950-015-9534-8

M3 - Article

VL - 20

SP - 397

EP - 417

JO - Journal of Seismology

JF - Journal of Seismology

SN - 1383-4649

IS - 2

ER -