Localizing a target inside an enclosed cylinder with a single chaotic cavity transducer augmented with supervised machine learning

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Ultrasound is employed in, e.g., non-destructive testing and environmental sensing. Unfortunately, conventional single-element ultrasound probes have a limited acoustic aperture. To overcome this limitation, we employ a modern method to increase the field-of-view of a commercial transducer and to test the approach by localizing a target. In practice, we merge the transducer with a chaotic cavity to increase the effective aperture of the transducer. In conventional pulse-echo ultrasound signal analysis, location estimation is based on determining the time-of-flight with known propagation speed in the medium. In the present case, the dispersing field induces complexity to this inverse problem, also in 2D. To tackle this issue, we use a convolutional neural network-based machine learning approach to study the feasibility of employing one single chaotic cavity transducer to localize an object in 2D. We show that we indeed can localize an inclusion inside a water-filled cylinder. The localization accuracy is one diameter of the inclusion. The area that we can infer increases by 49% in comparison to using the same transducer without applying the proposed chaotic cavity method. (C) 2021 Author(s).
Original languageEnglish
Article number115104
JournalAIP Advances
Volume11
Issue number11
Number of pages11
ISSN2158-3226
DOIs
Publication statusPublished - 2021
MoE publication typeA1 Journal article-refereed

Fields of Science

  • 113 Computer and information sciences
  • TIME-REVERSAL

Cite this