Measurement and interpretation of differential cross sections for Higgs boson production at root s=13 TeV

Research output: Contribution to journalArticleScientificpeer-review

Abstract

Differential Higgs boson (H) production cross sections are sensitive probes for physics beyond the standard model. New physics may contribute in the gluon-gluon fusion loop, the dominant Higgs boson production mechanism at the LHC, and manifest itself through deviations from the distributions predicted by the standard model. Combined spectra for the H -> gamma gamma, H -> ZZ, and H -> b (b) over bar decay channels and the inclusive Higgs boson production cross section are presented, based on proton-proton collision data recorded with the CMS detector at root s = 13 TeV corresponding to an integrated luminosity of 35.9 fb(-1). The transverse momentum spectrum is used to place limits on the Higgs boson couplings to the top, bottom, and charm quarks, as well as its direct coupling to the gluon field. No significant deviations from the standard model are observed in any differential distribution. The measured total cross section is 61.1 +/- 6.0 (stat) +/- 3.7 (syst) pb, and the precision of the measurement of the differential cross section of the Higgs boson transverse momentum is improved by about 15% with respect to the H -> gamma gamma channel alone. (C) 2019 The Author(s). Published by Elsevier B.V.
Original languageEnglish
JournalPhysics Letters B
Volume792
Pages (from-to)369-396
Number of pages28
ISSN0370-2693
DOIs
Publication statusPublished - 10 May 2019
MoE publication typeA1 Journal article-refereed

Fields of Science

  • 114 Physical sciences

Cite this

@article{2f662710d1e44eae9406a8c26d5f4c37,
title = "Measurement and interpretation of differential cross sections for Higgs boson production at root s=13 TeV",
abstract = "Differential Higgs boson (H) production cross sections are sensitive probes for physics beyond the standard model. New physics may contribute in the gluon-gluon fusion loop, the dominant Higgs boson production mechanism at the LHC, and manifest itself through deviations from the distributions predicted by the standard model. Combined spectra for the H -> gamma gamma, H -> ZZ, and H -> b (b) over bar decay channels and the inclusive Higgs boson production cross section are presented, based on proton-proton collision data recorded with the CMS detector at root s = 13 TeV corresponding to an integrated luminosity of 35.9 fb(-1). The transverse momentum spectrum is used to place limits on the Higgs boson couplings to the top, bottom, and charm quarks, as well as its direct coupling to the gluon field. No significant deviations from the standard model are observed in any differential distribution. The measured total cross section is 61.1 +/- 6.0 (stat) +/- 3.7 (syst) pb, and the precision of the measurement of the differential cross section of the Higgs boson transverse momentum is improved by about 15{\%} with respect to the H -> gamma gamma channel alone. (C) 2019 The Author(s). Published by Elsevier B.V.",
keywords = "114 Physical sciences",
author = "{The CMS Collaboration} and Sirunyan, {A. M.} and P. Eerola and H. Kirschenmann and J. Pekkanen and M. Voutilainen and J. Havukainen and Heikkil{\"a}, {J. K.} and T. J{\"a}rvinen and V. Karim{\"a}ki and R. Kinnunen and T. Lamp{\'e}n and K. Lassila-Perini and S. Laurila and S. Lehti and T. Lind{\'e}n and P. Luukka and T. M{\"a}enp{\"a}{\"a} and H. Siikonen and E. Tuominen and J. Tuominiemi and T. Tuuva",
year = "2019",
month = "5",
day = "10",
doi = "10.1016/j.physletb.2019.03.059",
language = "English",
volume = "792",
pages = "369--396",
journal = "Physics Letters B",
issn = "0370-2693",
publisher = "Elsevier Scientific Publ. Co",

}

TY - JOUR

T1 - Measurement and interpretation of differential cross sections for Higgs boson production at root s=13 TeV

AU - The CMS Collaboration

AU - Sirunyan, A. M.

AU - Eerola, P.

AU - Kirschenmann, H.

AU - Pekkanen, J.

AU - Voutilainen, M.

AU - Havukainen, J.

AU - Heikkilä, J. K.

AU - Järvinen, T.

AU - Karimäki, V.

AU - Kinnunen, R.

AU - Lampén, T.

AU - Lassila-Perini, K.

AU - Laurila, S.

AU - Lehti, S.

AU - Lindén, T.

AU - Luukka, P.

AU - Mäenpää, T.

AU - Siikonen, H.

AU - Tuominen, E.

AU - Tuominiemi, J.

AU - Tuuva, T.

PY - 2019/5/10

Y1 - 2019/5/10

N2 - Differential Higgs boson (H) production cross sections are sensitive probes for physics beyond the standard model. New physics may contribute in the gluon-gluon fusion loop, the dominant Higgs boson production mechanism at the LHC, and manifest itself through deviations from the distributions predicted by the standard model. Combined spectra for the H -> gamma gamma, H -> ZZ, and H -> b (b) over bar decay channels and the inclusive Higgs boson production cross section are presented, based on proton-proton collision data recorded with the CMS detector at root s = 13 TeV corresponding to an integrated luminosity of 35.9 fb(-1). The transverse momentum spectrum is used to place limits on the Higgs boson couplings to the top, bottom, and charm quarks, as well as its direct coupling to the gluon field. No significant deviations from the standard model are observed in any differential distribution. The measured total cross section is 61.1 +/- 6.0 (stat) +/- 3.7 (syst) pb, and the precision of the measurement of the differential cross section of the Higgs boson transverse momentum is improved by about 15% with respect to the H -> gamma gamma channel alone. (C) 2019 The Author(s). Published by Elsevier B.V.

AB - Differential Higgs boson (H) production cross sections are sensitive probes for physics beyond the standard model. New physics may contribute in the gluon-gluon fusion loop, the dominant Higgs boson production mechanism at the LHC, and manifest itself through deviations from the distributions predicted by the standard model. Combined spectra for the H -> gamma gamma, H -> ZZ, and H -> b (b) over bar decay channels and the inclusive Higgs boson production cross section are presented, based on proton-proton collision data recorded with the CMS detector at root s = 13 TeV corresponding to an integrated luminosity of 35.9 fb(-1). The transverse momentum spectrum is used to place limits on the Higgs boson couplings to the top, bottom, and charm quarks, as well as its direct coupling to the gluon field. No significant deviations from the standard model are observed in any differential distribution. The measured total cross section is 61.1 +/- 6.0 (stat) +/- 3.7 (syst) pb, and the precision of the measurement of the differential cross section of the Higgs boson transverse momentum is improved by about 15% with respect to the H -> gamma gamma channel alone. (C) 2019 The Author(s). Published by Elsevier B.V.

KW - 114 Physical sciences

U2 - 10.1016/j.physletb.2019.03.059

DO - 10.1016/j.physletb.2019.03.059

M3 - Article

VL - 792

SP - 369

EP - 396

JO - Physics Letters B

JF - Physics Letters B

SN - 0370-2693

ER -