Measurement of double-parton scattering in inclusive production of four jets with low transverse momentum in proton-proton collisions at root s=13 TeV

The CMS Collaboration, A. Tumasyan, W. Adam, P. Eerola, Laurent Forthomme, H. Kirschenmann, K. Österberg, M. Voutilainen, Shudhashil Bharthuar, Erik Brücken, F. Garcia, J. Havukainen, Jaana Heikkilä, Minsuk Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. LindénMikko Lotti, P. Luukka, Laura Martikainen, Jennifer Ott, Juska Pekkanen, H. Siikonen, E. Tuominen, J. Tuominiemi, Jussi Viinikainen, H. Petrow, T. Tuuva

Research output: Contribution to journalArticleScientificpeer-review

Abstract

A measurement of inclusive four-jet production in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. The transverse momenta of jets within vertical bar eta vertical bar 4.7 are required to exceed 35, 30, 25, and 20 GeV for the first-, second-, third-, and fourth-leading jet, respectively. Differential cross sections are measured as functions of the jet transverse momentum, jet pseudorapidity, and several other observables that describe the angular correlations between the jets. The measured distributions show sensitivity to different aspects of the underlying event, parton shower modeling, and matrix element calculations. In particular, the interplay between angular correlations caused by parton shower and double-parton scattering contributions is shown to be important. The double-parton scattering contribution is extracted by means of a template fit to the data, using distributions for single-parton scattering obtained from Monte Carlo event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data. The effective double-parton scattering cross section is calculated and discussed in view of previous measurements and of its dependence on the models used to describe the single-parton scattering background.

Original languageEnglish
Article number177
JournalJournal of High Energy Physics
Volume2022
Issue number1
Number of pages61
ISSN1029-8479
DOIs
Publication statusPublished - 28 Jan 2022
MoE publication typeA1 Journal article-refereed

Fields of Science

  • 114 Physical sciences
  • Hadron-Hadron Scattering
  • Jets
  • QCD
  • DEEP-INELASTIC-SCATTERING

Cite this