Abstract

This multi-disciplinary in-vivo imaging project combines methods from x-ray physics, radio- and nano-chemistry, environmental & agricultural sciences, computer modelling and mathematics to visualize otherwise inseparable plants tissues to 1) determine their anatomy in 3D, 2) track tissue developmental patterning, 3) analyze transport rates of natural compounds around the plant body, and 4) study the effect of environmental conditions on plant development, compound transport and metabolism in 4D. In order to see different anatomical features, biological samples are usually cut to thin 2D slices, stained with histological stains and imaged using light microscopy. However, only limited spatial information can be gained from 2D sections and samples represent single time points. This is problematic for developmental and temporal transport assays. Material scientists routinely use x-ray µ-Computed Tomog-raphy (µCT) for 3D objects. Understandably, also plant researchers have found the benefits of µCT and synchrotron imaging modalities, which enable analysis of intact plant samples in 3D with high resolution. Imaging biological samples that are fixed or dried is relatively easy, but this is not the case with living subjects. Every living thing that contains water, DNA, RNA and proteins is susceptible for genotoxic radiation damage, cell death, tissue shrinkage and movement, which make in-vivo imaging exposure duration and radiation dose sensitive. For this reason temporal 4D x-ray microscopy analyses have not been conducted routinely. Similarly to animal research, seemingly uniform plant tissues can be highlighted and differentiated by infusing them with contrast dyes (see image). In order to take the next big step forward, plant specific “natural-compound mimicking” custom-made radiolabelled contrast dyes will be synthetized and tested on multiple imaging modalities. To summarize, our aim to advance high resolution 4D x-ray in-vivo imaging by 1) generating high resolution datasets from living plants infiltrated with tissue specific contrast dyes, 2) developing new sparing imaging algorithms, and 3) enabling semi-automatic sample analysis and comparison of different 3D datasets via advanced computing.
Original languageEnglish
Publication statusPublished - 2018
MoE publication typeNot Eligible
EventFysiikan Päivät 2018 -
Duration: 21 Mar 201823 Mar 2018
http://fp2018.utu.fi/

Conference

ConferenceFysiikan Päivät 2018
Period21/03/201823/03/2018
Internet address

Fields of Science

  • 114 Physical sciences

Cite this

@conference{eede3812300240abbbc5abe01e375930,
title = "MULTIDISCIPLINARY 4D IMAGING OF PLANT DEVELOPMENT, METABOLITE TRANSPORT AND ENVIRONMENTAL PROCESSES IN-VIVO",
abstract = "This multi-disciplinary in-vivo imaging project combines methods from x-ray physics, radio- and nano-chemistry, environmental & agricultural sciences, computer modelling and mathematics to visualize otherwise inseparable plants tissues to 1) determine their anatomy in 3D, 2) track tissue developmental patterning, 3) analyze transport rates of natural compounds around the plant body, and 4) study the effect of environmental conditions on plant development, compound transport and metabolism in 4D. In order to see different anatomical features, biological samples are usually cut to thin 2D slices, stained with histological stains and imaged using light microscopy. However, only limited spatial information can be gained from 2D sections and samples represent single time points. This is problematic for developmental and temporal transport assays. Material scientists routinely use x-ray µ-Computed Tomog-raphy (µCT) for 3D objects. Understandably, also plant researchers have found the benefits of µCT and synchrotron imaging modalities, which enable analysis of intact plant samples in 3D with high resolution. Imaging biological samples that are fixed or dried is relatively easy, but this is not the case with living subjects. Every living thing that contains water, DNA, RNA and proteins is susceptible for genotoxic radiation damage, cell death, tissue shrinkage and movement, which make in-vivo imaging exposure duration and radiation dose sensitive. For this reason temporal 4D x-ray microscopy analyses have not been conducted routinely. Similarly to animal research, seemingly uniform plant tissues can be highlighted and differentiated by infusing them with contrast dyes (see image). In order to take the next big step forward, plant specific “natural-compound mimicking” custom-made radiolabelled contrast dyes will be synthetized and tested on multiple imaging modalities. To summarize, our aim to advance high resolution 4D x-ray in-vivo imaging by 1) generating high resolution datasets from living plants infiltrated with tissue specific contrast dyes, 2) developing new sparing imaging algorithms, and 3) enabling semi-automatic sample analysis and comparison of different 3D datasets via advanced computing.",
keywords = "114 Physical sciences",
author = "Help-Rinta-Rahko, {Hanna Elina} and Lusa, {Merja Johanna} and Sarparanta, {Mirkka P{\"a}ivikki} and Immanen, {Juha Jouko Matias} and {Alonso Serra}, {Juan Antonio} and Pasi Raumonen and Samuli Siltanen and Meaney, {Alexander Juhani Brian} and H{\"o}ltt{\"a}, {Teemu Samuli} and M{\"a}h{\"o}nen, {Ari Pekka} and Heikki Suhonen and Huotari, {Simo Jooseppi}",
year = "2018",
language = "English",
note = "null ; Conference date: 21-03-2018 Through 23-03-2018",
url = "http://fp2018.utu.fi/",

}

TY - CONF

T1 - MULTIDISCIPLINARY 4D IMAGING OF PLANT DEVELOPMENT, METABOLITE TRANSPORT AND ENVIRONMENTAL PROCESSES IN-VIVO

AU - Help-Rinta-Rahko, Hanna Elina

AU - Lusa, Merja Johanna

AU - Sarparanta, Mirkka Päivikki

AU - Immanen, Juha Jouko Matias

AU - Alonso Serra, Juan Antonio

AU - Raumonen, Pasi

AU - Siltanen, Samuli

AU - Meaney, Alexander Juhani Brian

AU - Hölttä, Teemu Samuli

AU - Mähönen, Ari Pekka

AU - Suhonen, Heikki

AU - Huotari, Simo Jooseppi

PY - 2018

Y1 - 2018

N2 - This multi-disciplinary in-vivo imaging project combines methods from x-ray physics, radio- and nano-chemistry, environmental & agricultural sciences, computer modelling and mathematics to visualize otherwise inseparable plants tissues to 1) determine their anatomy in 3D, 2) track tissue developmental patterning, 3) analyze transport rates of natural compounds around the plant body, and 4) study the effect of environmental conditions on plant development, compound transport and metabolism in 4D. In order to see different anatomical features, biological samples are usually cut to thin 2D slices, stained with histological stains and imaged using light microscopy. However, only limited spatial information can be gained from 2D sections and samples represent single time points. This is problematic for developmental and temporal transport assays. Material scientists routinely use x-ray µ-Computed Tomog-raphy (µCT) for 3D objects. Understandably, also plant researchers have found the benefits of µCT and synchrotron imaging modalities, which enable analysis of intact plant samples in 3D with high resolution. Imaging biological samples that are fixed or dried is relatively easy, but this is not the case with living subjects. Every living thing that contains water, DNA, RNA and proteins is susceptible for genotoxic radiation damage, cell death, tissue shrinkage and movement, which make in-vivo imaging exposure duration and radiation dose sensitive. For this reason temporal 4D x-ray microscopy analyses have not been conducted routinely. Similarly to animal research, seemingly uniform plant tissues can be highlighted and differentiated by infusing them with contrast dyes (see image). In order to take the next big step forward, plant specific “natural-compound mimicking” custom-made radiolabelled contrast dyes will be synthetized and tested on multiple imaging modalities. To summarize, our aim to advance high resolution 4D x-ray in-vivo imaging by 1) generating high resolution datasets from living plants infiltrated with tissue specific contrast dyes, 2) developing new sparing imaging algorithms, and 3) enabling semi-automatic sample analysis and comparison of different 3D datasets via advanced computing.

AB - This multi-disciplinary in-vivo imaging project combines methods from x-ray physics, radio- and nano-chemistry, environmental & agricultural sciences, computer modelling and mathematics to visualize otherwise inseparable plants tissues to 1) determine their anatomy in 3D, 2) track tissue developmental patterning, 3) analyze transport rates of natural compounds around the plant body, and 4) study the effect of environmental conditions on plant development, compound transport and metabolism in 4D. In order to see different anatomical features, biological samples are usually cut to thin 2D slices, stained with histological stains and imaged using light microscopy. However, only limited spatial information can be gained from 2D sections and samples represent single time points. This is problematic for developmental and temporal transport assays. Material scientists routinely use x-ray µ-Computed Tomog-raphy (µCT) for 3D objects. Understandably, also plant researchers have found the benefits of µCT and synchrotron imaging modalities, which enable analysis of intact plant samples in 3D with high resolution. Imaging biological samples that are fixed or dried is relatively easy, but this is not the case with living subjects. Every living thing that contains water, DNA, RNA and proteins is susceptible for genotoxic radiation damage, cell death, tissue shrinkage and movement, which make in-vivo imaging exposure duration and radiation dose sensitive. For this reason temporal 4D x-ray microscopy analyses have not been conducted routinely. Similarly to animal research, seemingly uniform plant tissues can be highlighted and differentiated by infusing them with contrast dyes (see image). In order to take the next big step forward, plant specific “natural-compound mimicking” custom-made radiolabelled contrast dyes will be synthetized and tested on multiple imaging modalities. To summarize, our aim to advance high resolution 4D x-ray in-vivo imaging by 1) generating high resolution datasets from living plants infiltrated with tissue specific contrast dyes, 2) developing new sparing imaging algorithms, and 3) enabling semi-automatic sample analysis and comparison of different 3D datasets via advanced computing.

KW - 114 Physical sciences

M3 - Abstract

ER -