Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis

Shabih Shakeel, Brenda M. Westerhuis, Ausra Domanska, Roman I. Koning, Rishi Matadeen, Abraham J. Koster, Arjen Q. Bakker, Tim Beaumont, Katja C. Wolthers, Sarah Jane Butcher

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation.
Original languageEnglish
Article number11387
JournalNature Communications
Volume7
Number of pages8
ISSN2041-1723
DOIs
Publication statusPublished - 20 Jul 2016
MoE publication typeA1 Journal article-refereed

Fields of Science

  • 1182 Biochemistry, cell and molecular biology
  • VIROLOGY
  • CRYO-ELECTRON MICROSCOPY
  • STRUCTURAL BIOLOGY
  • SINGLE PARTICLE
  • PICORNAVIRUSES
  • PARECHOVIRUS
  • 1183 Plant biology, microbiology, virology

Cite this