Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations

Michael Boy, Ditte Mogensen, Sampo Smolander, Luxi Zhou, Tuomo Nieminen, Pauli Paasonen, C Plass-Dülmer, Mikko Juhani Sipilä, Tuukka Petaja, Roy Mauldin III, H Berresheim, Markku Kulmala

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The effect of increased reaction rates of stabilized Criegee intermediates (sCIs) with SO2 to produce sulfuric acid is investigated using data from two different locations, SMEAR II, Hyytiälä, Finland, and Hohenpeissenberg, Germany. Results from MALTE, a zero-dimensional model, show that using previous values for the rate coefficients of sCI + SO2, the model underestimates gas phase H2SO4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calculated by Mauldin et al. (2012) increases sulfuric acid by 30–40%. Increasing the rate coefficient for formaldehyde oxide (CH2OO) with SO2 according to the values recommended by Welz et al. (2012) increases the H2SO4 yield by 3–6%. Taken together, these increases lead to the conclusion that, depending on their concentrations, the reaction of stabilized Criegee intermediates with SO2 could contribute as much as 33–46% to atmospheric sulfuric acid gas phase concentrations at ground level. Using the SMEAR II data, results from SOSA, a one-dimensional model, show that the contribution from sCI reactions to sulfuric acid production is most important in the canopy, where the concentrations of organic compounds are the highest, but can have significant effects on sulfuric acid concentrations up to 100 m. The recent findings that the reaction of sCI + SO2 is much faster than previously thought together with these results show that the inclusion of this new oxidation mechanism could be crucial in regional as well as global models.
Original languageEnglish
JournalAtmospheric Chemistry and Physics
Volume13
Issue number7
Pages (from-to)3865-3879
Number of pages15
ISSN1680-7316
DOIs
Publication statusPublished - 12 Apr 2013
MoE publication typeA1 Journal article-refereed

Fields of Science

  • 114 Physical sciences
  • Atmospheric chemistry
  • Sulphuric acid
  • Criegee intermediates
  • 116 Chemical sciences
  • Atmospheric chemistry
  • Sulphuric acid
  • Criegee intermediates

Cite this