Predicting vegetation characteristics in a changing environment by means of laser scanning

Research output: ThesisDoctoral Thesis

Abstract

Accurate and up-to-date information concerning vegetation characteristics is needed for decision-making from individual-tree-level management activities to the strategic planning of forest resources. Outdated information may lead to unbeneficial or even wrong decisions, at least when it comes to the timing of management activities. Airborne laser scanning (ALS) has so far been successfully used for applications involving detailed vegetation mapping because of its capability to simultaneously produce accurate information on vegetation and ground surfaces. The aim of this dissertation was to develop methods for characterizing vegetation and its changes in varying environments. A method called multisource single-tree inventory (MS-STI) was developed in substudy I to update urban tree attributes. In MS-STI stem map was produced with terrestrial laser scanning and by combining the stem map with predictors derived from ALS data it was possible to obtain improved estimates of diameter-at-breast height but also to produce new attributes such as height and crown size. Boat-based mobile laser scanning (MLS) data were employed in substudy II to map riverbank vegetation and identify changes. The overall classification accuracy of 73% was obtained, which is similar to accuracies found in other studies. With multi-temporal MLS data sets changes in vegetation were mapped year to year. In substudy III, open access ALS data were combined with multisource national forest inventory (NFI) data to investigate the drivers associated to wind damage. The special interest was in ALS-based predictors to map areas with wind disturbance and apply logistic regression to produce a continuous probability surface of wind predisposition to identify areas most likely to experience wind damage. The results demonstrated that a combination of ALS and multisource NFI in the modelling approach increased the prediction accuracy from 76% to 81%. The dissertation showed the capability of ALS and MLS for characterizing vegetation and mapping changes in varying environments. The developed applications could increase and expand the utilization of multi-temporal 3D data sets as well as increase data value. The results of this dissertation can be utilized in producing more accurate, diverse, and up-to-date information for decision-making related to natural resources
Original languageEnglish
Place of PublicationVantaa
Publisher
Print ISBNs978-951-651-523-9
Electronic ISBNs978-951-651-522-2
DOIs
Publication statusPublished - 22 Apr 2016
MoE publication typeG5 Doctoral dissertation (article)

Fields of Science

  • 4112 Forestry
  • forest inventory
  • forest mensuration
  • LiDAR
  • remote sensing
  • mapping
  • change detection
  • monitoring

Cite this

@phdthesis{f8d10bc8931d4e63804448a834c57eb8,
title = "Predicting vegetation characteristics in a changing environment by means of laser scanning",
abstract = "Accurate and up-to-date information concerning vegetation characteristics is needed for decision-making from individual-tree-level management activities to the strategic planning of forest resources. Outdated information may lead to unbeneficial or even wrong decisions, at least when it comes to the timing of management activities. Airborne laser scanning (ALS) has so far been successfully used for applications involving detailed vegetation mapping because of its capability to simultaneously produce accurate information on vegetation and ground surfaces. The aim of this dissertation was to develop methods for characterizing vegetation and its changes in varying environments. A method called multisource single-tree inventory (MS-STI) was developed in substudy I to update urban tree attributes. In MS-STI stem map was produced with terrestrial laser scanning and by combining the stem map with predictors derived from ALS data it was possible to obtain improved estimates of diameter-at-breast height but also to produce new attributes such as height and crown size. Boat-based mobile laser scanning (MLS) data were employed in substudy II to map riverbank vegetation and identify changes. The overall classification accuracy of 73{\%} was obtained, which is similar to accuracies found in other studies. With multi-temporal MLS data sets changes in vegetation were mapped year to year. In substudy III, open access ALS data were combined with multisource national forest inventory (NFI) data to investigate the drivers associated to wind damage. The special interest was in ALS-based predictors to map areas with wind disturbance and apply logistic regression to produce a continuous probability surface of wind predisposition to identify areas most likely to experience wind damage. The results demonstrated that a combination of ALS and multisource NFI in the modelling approach increased the prediction accuracy from 76{\%} to 81{\%}. The dissertation showed the capability of ALS and MLS for characterizing vegetation and mapping changes in varying environments. The developed applications could increase and expand the utilization of multi-temporal 3D data sets as well as increase data value. The results of this dissertation can be utilized in producing more accurate, diverse, and up-to-date information for decision-making related to natural resources",
keywords = "4112 Forestry, forest inventory, forest mensuration, LiDAR, remote sensing, mapping, change detection, monitoring",
author = "Ninni Saarinen",
year = "2016",
month = "4",
day = "22",
doi = "10.14214/df.216",
language = "English",
isbn = "978-951-651-523-9",
series = "Dissertationes Forestales",
publisher = "Finnish Society of Forest Science",
number = "216",
address = "Finland",

}

Predicting vegetation characteristics in a changing environment by means of laser scanning. / Saarinen, Ninni .

Vantaa : Finnish Society of Forest Science, 2016. 60 p.

Research output: ThesisDoctoral Thesis

TY - THES

T1 - Predicting vegetation characteristics in a changing environment by means of laser scanning

AU - Saarinen, Ninni

PY - 2016/4/22

Y1 - 2016/4/22

N2 - Accurate and up-to-date information concerning vegetation characteristics is needed for decision-making from individual-tree-level management activities to the strategic planning of forest resources. Outdated information may lead to unbeneficial or even wrong decisions, at least when it comes to the timing of management activities. Airborne laser scanning (ALS) has so far been successfully used for applications involving detailed vegetation mapping because of its capability to simultaneously produce accurate information on vegetation and ground surfaces. The aim of this dissertation was to develop methods for characterizing vegetation and its changes in varying environments. A method called multisource single-tree inventory (MS-STI) was developed in substudy I to update urban tree attributes. In MS-STI stem map was produced with terrestrial laser scanning and by combining the stem map with predictors derived from ALS data it was possible to obtain improved estimates of diameter-at-breast height but also to produce new attributes such as height and crown size. Boat-based mobile laser scanning (MLS) data were employed in substudy II to map riverbank vegetation and identify changes. The overall classification accuracy of 73% was obtained, which is similar to accuracies found in other studies. With multi-temporal MLS data sets changes in vegetation were mapped year to year. In substudy III, open access ALS data were combined with multisource national forest inventory (NFI) data to investigate the drivers associated to wind damage. The special interest was in ALS-based predictors to map areas with wind disturbance and apply logistic regression to produce a continuous probability surface of wind predisposition to identify areas most likely to experience wind damage. The results demonstrated that a combination of ALS and multisource NFI in the modelling approach increased the prediction accuracy from 76% to 81%. The dissertation showed the capability of ALS and MLS for characterizing vegetation and mapping changes in varying environments. The developed applications could increase and expand the utilization of multi-temporal 3D data sets as well as increase data value. The results of this dissertation can be utilized in producing more accurate, diverse, and up-to-date information for decision-making related to natural resources

AB - Accurate and up-to-date information concerning vegetation characteristics is needed for decision-making from individual-tree-level management activities to the strategic planning of forest resources. Outdated information may lead to unbeneficial or even wrong decisions, at least when it comes to the timing of management activities. Airborne laser scanning (ALS) has so far been successfully used for applications involving detailed vegetation mapping because of its capability to simultaneously produce accurate information on vegetation and ground surfaces. The aim of this dissertation was to develop methods for characterizing vegetation and its changes in varying environments. A method called multisource single-tree inventory (MS-STI) was developed in substudy I to update urban tree attributes. In MS-STI stem map was produced with terrestrial laser scanning and by combining the stem map with predictors derived from ALS data it was possible to obtain improved estimates of diameter-at-breast height but also to produce new attributes such as height and crown size. Boat-based mobile laser scanning (MLS) data were employed in substudy II to map riverbank vegetation and identify changes. The overall classification accuracy of 73% was obtained, which is similar to accuracies found in other studies. With multi-temporal MLS data sets changes in vegetation were mapped year to year. In substudy III, open access ALS data were combined with multisource national forest inventory (NFI) data to investigate the drivers associated to wind damage. The special interest was in ALS-based predictors to map areas with wind disturbance and apply logistic regression to produce a continuous probability surface of wind predisposition to identify areas most likely to experience wind damage. The results demonstrated that a combination of ALS and multisource NFI in the modelling approach increased the prediction accuracy from 76% to 81%. The dissertation showed the capability of ALS and MLS for characterizing vegetation and mapping changes in varying environments. The developed applications could increase and expand the utilization of multi-temporal 3D data sets as well as increase data value. The results of this dissertation can be utilized in producing more accurate, diverse, and up-to-date information for decision-making related to natural resources

KW - 4112 Forestry

KW - forest inventory

KW - forest mensuration

KW - LiDAR

KW - remote sensing

KW - mapping

KW - change detection

KW - monitoring

UR - http://www.metla.fi/dissertationes/df216.htm

U2 - 10.14214/df.216

DO - 10.14214/df.216

M3 - Doctoral Thesis

SN - 978-951-651-523-9

T3 - Dissertationes Forestales

PB - Finnish Society of Forest Science

CY - Vantaa

ER -

Saarinen N. Predicting vegetation characteristics in a changing environment by means of laser scanning. Vantaa: Finnish Society of Forest Science, 2016. 60 p. (Dissertationes Forestales; 216). https://doi.org/10.14214/df.216