Study of interpad-gap of HPK 3.1 production LGADs with Transient Current Technique

Research output: Contribution to journalArticleScientificpeer-review


The Phase-2 upgrade of the Large Hadron Collider (LHC) to High-Luminosity LHC (HL-LHC) allows an increase in the operational luminosity value by a factor of 5-7 that will result in delivering 3000 fb(-1) or more integrated luminosity. Due to high luminosity, the number of interactions per bunch crossings (pileup) will increase up to a value of 140-200. To cope with high pileup rates, a precision minimum ionising particles (MIPs) timing detector (MTD) with a time resolution of similar to 30-40 ps and hermetic coverage up to a pseudo-rapidity of vertical bar eta vertical bar = 3 is proposed by the Compact Muon Solenoid (CMS) experiment. An endcap part (1.6 <vertical bar eta vertical bar <3) of the MTD, called the endcap timing layer, will be based on low-gain avalanche detector (LGAD) technology. LGADs provide a good timing resolution due to a combination of a fast signal rise time and high signal-to-noise ratio. The performance of the ETL depends on optimising the crucial features of the sensors, namely; gain, signal homogeneity, fill factor, leakage current, uniformity of multiple-pad sensors and long term stability. The paper mainly focuses on the study of the fill factor of LGADs with varying temperature and irradiation at varying proton fluences as these sensors will be operated at low temperatures and are subjected to a high radiation environment.

The 3.1 production of LGADs from Hamamatsu Photonics K.K. (HPK) includes 2x2 sensors with different structures, in particular, different values of narrower inactive region widths between the pads, called the no-gain region. In this paper, the term interpad-gap is used instead of no-gain region in order to follow the conventional terminology. These sensors have been designed to study their fill factor, which is the ratio of the area within the active region (gain region) to the total sensor area. A comparative study on the dependence of breakdown voltage with the interpad-gap width for the sensors has been carried out. Using infrared light (as the electron-hole pair creation by IR laser mimics closely to the traversing of MIPs) from the Scanning-Transient Current Technique (Scanning-TCT) set-up shows that the fill factor does not vary significantly with a variation in temperature and irradiation at high proton fluences.

Original languageEnglish
Article number164494
JournalNuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment
Number of pages9
Publication statusPublished - 1 Nov 2020
MoE publication typeA1 Journal article-refereed

Fields of Science

  • Fill factor
  • Low gain avalanche detector (LGAD)
  • Scanning-TCT
  • 114 Physical sciences

Cite this