Suppression of helium migration in arc-melted and 3D-printed CoCrFeMnNi high entropy alloy

Zhehao Chen, Eryang Lu, Kenichiro Mizohata, Anna Liski, Xudong An, Tomi Suhonen, Anssi Laukkanen, Juha Lagerbom, Antti Pasanen, Antti Vaajoki, Filip Tuomisto

Research output: Contribution to journalArticleScientificpeer-review

Abstract

We compare the evolution and migration of helium cavities in 3D-printed and arc-melted CoCrFeMnNi high entropy alloys (HEAs), and 304 stainless steel (SS), using transmission electron microscopy (TEM). The materials are subjected to Ni and He sequential implantation as well as subsequent thermal annealing. After irradiation at room temperature, all samples initially display similar He cavity sizes. Annealing up to 673 K has a minimal impact on cavity size. However, annealing at 873 K leads to significant cavity growth. Both HEA materials exhibit larger average cavity sizes compared to 304 SS, while a higher proportion of small cavities is found in the 304 SS. This indicates that Ostwald Ripening is more prevalent in 304 SS, confirmed by in-situ thermal annealing in TEM. Depth distribution analysis reveals distinct cavity belts after annealing: from the narrowest in 3D printed HEA to the broadest belts in 304 SS. These results indicate that the He concentration at the peak of irradiation damage decreases in the same order. We suggest that the long-range migration of He atoms is limited in both the Cantor and 3D-printed Cantor HEAs, potentially due to the complex diffusion paths of the He atoms.

Original languageEnglish
Article number155238
JournalJournal of Nuclear Materials
Volume599
Number of pages11
ISSN0022-3115
DOIs
Publication statusPublished - Oct 2024
MoE publication typeA1 Journal article-refereed

Fields of Science

  • Additive manufacturing
  • He cavities
  • High entropy alloys
  • Transmission electron microscopy
  • 114 Physical sciences
  • 216 Materials engineering
  • 221 Nano-technology

Cite this