Surface and Grain Boundary Coating for Stabilizing LiNi0.8Mn0.1Co0.1O2 Based Electrodes

Zahra Ahaliabadeh, Ville Miikkulainen, Miia Mäntymäki, Seyedabolfazl Mousavihashemi, Lide Yao, Hua Jiang, Simo Huotari, Timo Kankaanpää, Tanja Kallio, Mattia Colalongo

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The widespread use of high-capacity Ni-rich layered oxides such as LiNi0.8Mn0.1Co0.1O2 (NMC811), in lithium-ion batteries is hindered due to practical capacity loss and reduced working voltage during operation. Aging leads to defective NMC811 particles, affecting electrochemical performance. Surface modification offers a promising approach to improve cycle life. Here, we introduce an amorphous lithium titanate (LTO) coating via atomic layer deposition (ALD), not only covering NMC811 surfaces but also penetrating cavities and grain boundaries. As NMC811 electrodes suffer from low structural stability during charge and discharge, We combined electrochemistry, operando X-ray diffraction (XRD), and dilatometry to understand structural changes and the coating protective effects. XRD reveals significant structural evolution during delithiation for uncoated NMC811. The highly reversible phase change in coated NMC811 highlights enhanced bulk structure stability. The LTO coating retards NMC811 degradation, boosting capacity retention from 86 % to 93 % after 140 cycles. This study underscores the importance of grain boundary engineering for Ni-rich layered oxide electrode stability and the interplay of chemical and mechanical factors in battery aging.
Original languageEnglish
Article numbere202400272
JournalChemSusChem
Volume17
Issue number23
Number of pages15
ISSN1864-5631
DOIs
Publication statusPublished - 6 Dec 2024
MoE publication typeA1 Journal article-refereed

Fields of Science

  • Atomic layer deposition
  • Cracking
  • Lithium titanate
  • Nickel-rich positive electrode
  • Phase transitions
  • 116 Chemical sciences

Cite this