THE BORDERLINES OF INVISIBILITY AND VISIBILITY IN CALDERON'S INVERSE PROBLEM

Kari Astala, Matti Lassas, Lassi Päivärinta

Research output: Contribution to journalArticleScientificpeer-review

Original languageEnglish
JournalAnalysis & PDE
Volume9
Issue number1
Pages (from-to)43-98
Number of pages56
ISSN1948-206X
DOIs
Publication statusPublished - 2016
MoE publication typeA1 Journal article-refereed

Fields of Science

  • inverse conductivity problem
  • invisibility
  • quasiconformal mappings
  • ELECTRICAL-IMPEDANCE TOMOGRAPHY
  • BOUNDARY-VALUE PROBLEM
  • D-BAR METHOD
  • IMPERFECTLY KNOWN BOUNDARY
  • CONDUCTIVITY PROBLEM
  • HELMHOLTZ-EQUATION
  • GLOBAL UNIQUENESS
  • NONSMOOTH CONDUCTIVITIES
  • TRANSFORMATION OPTICS
  • FINITE DISTORTION
  • 111 Mathematics

Cite this

@article{02fd0e02d2004a02bc0b7c1290193249,
title = "THE BORDERLINES OF INVISIBILITY AND VISIBILITY IN CALDERON'S INVERSE PROBLEM",
keywords = "inverse conductivity problem, invisibility, quasiconformal mappings, ELECTRICAL-IMPEDANCE TOMOGRAPHY, BOUNDARY-VALUE PROBLEM, D-BAR METHOD, IMPERFECTLY KNOWN BOUNDARY, CONDUCTIVITY PROBLEM, HELMHOLTZ-EQUATION, GLOBAL UNIQUENESS, NONSMOOTH CONDUCTIVITIES, TRANSFORMATION OPTICS, FINITE DISTORTION, 111 Mathematics",
author = "Kari Astala and Matti Lassas and Lassi P{\"a}iv{\"a}rinta",
year = "2016",
doi = "10.2140/apde.2016.9.43",
language = "English",
volume = "9",
pages = "43--98",
journal = "Analysis & PDE",
issn = "1948-206X",
publisher = "MATHEMATICAL SCIENCE PUBL",
number = "1",

}

THE BORDERLINES OF INVISIBILITY AND VISIBILITY IN CALDERON'S INVERSE PROBLEM. / Astala, Kari; Lassas, Matti; Päivärinta, Lassi.

In: Analysis & PDE, Vol. 9, No. 1, 2016, p. 43-98.

Research output: Contribution to journalArticleScientificpeer-review

TY - JOUR

T1 - THE BORDERLINES OF INVISIBILITY AND VISIBILITY IN CALDERON'S INVERSE PROBLEM

AU - Astala, Kari

AU - Lassas, Matti

AU - Päivärinta, Lassi

PY - 2016

Y1 - 2016

KW - inverse conductivity problem

KW - invisibility

KW - quasiconformal mappings

KW - ELECTRICAL-IMPEDANCE TOMOGRAPHY

KW - BOUNDARY-VALUE PROBLEM

KW - D-BAR METHOD

KW - IMPERFECTLY KNOWN BOUNDARY

KW - CONDUCTIVITY PROBLEM

KW - HELMHOLTZ-EQUATION

KW - GLOBAL UNIQUENESS

KW - NONSMOOTH CONDUCTIVITIES

KW - TRANSFORMATION OPTICS

KW - FINITE DISTORTION

KW - 111 Mathematics

U2 - 10.2140/apde.2016.9.43

DO - 10.2140/apde.2016.9.43

M3 - Article

VL - 9

SP - 43

EP - 98

JO - Analysis & PDE

JF - Analysis & PDE

SN - 1948-206X

IS - 1

ER -