TY - JOUR
T1 - The Ricci flow of the `RP3 geon' and noncompact manifolds with essential minimal spheres
AU - Balehowsky, Tracey Jean
PY - 2010
Y1 - 2010
N2 - It is well-known that the Ricci flow of a closed 3-manifold containing an essential minimal 2-sphere will fail to exist after a finite time. Conversely, the Ricci flow of a complete, rotationally symmetric, asymptotically flat manifold containing no minimal spheres is immortal. We discuss an intermediate case, that of a complete, noncompact manifold with essential minimal hypersphere. For 3-manifolds, if the scalar curvature vanishes on asymptotic ends and is bounded below initially by a negative constant (that depends on the initial area of the minimal sphere), we show that a singularity develops in finite time. In particular, this result applies to asymptotically flat manifolds, which are a boundary case with respect to the neckpinch theorem of M Simon. We provide numerical evolutions to explore the case where the initial scalar curvature is less than the bound.
AB - It is well-known that the Ricci flow of a closed 3-manifold containing an essential minimal 2-sphere will fail to exist after a finite time. Conversely, the Ricci flow of a complete, rotationally symmetric, asymptotically flat manifold containing no minimal spheres is immortal. We discuss an intermediate case, that of a complete, noncompact manifold with essential minimal hypersphere. For 3-manifolds, if the scalar curvature vanishes on asymptotic ends and is bounded below initially by a negative constant (that depends on the initial area of the minimal sphere), we show that a singularity develops in finite time. In particular, this result applies to asymptotically flat manifolds, which are a boundary case with respect to the neckpinch theorem of M Simon. We provide numerical evolutions to explore the case where the initial scalar curvature is less than the bound.
UR - https://arxiv.org/abs/1004.1833
M3 - Other articles
JO - arXiv.org
JF - arXiv.org
SN - 2331-8422
ER -