Abstract
In this paper, we study university admissions under a centralized system that uses grades and standardized test scores to match applicants to university programs. We consider affirmative action policies that seek to increase the number of admitted applicants from underrepresented groups. Since such a policy has to be announced before the start of the application period, there is uncertainty about the score distribution of the students applying to each program. This poses a difficult challenge for policy makers. We explore the possibility of using a predictive model trained on historical data to help optimize the parameters of such policies.
Original language | English |
---|---|
Publication status | Published - 2020 |
MoE publication type | Not Eligible |
Event | Educational Data Mining Workshops 2020 - Duration: 10 Jul 2020 → … https://fatedm.inria.fr/ |
Workshop
Workshop | Educational Data Mining Workshops 2020 |
---|---|
Abbreviated title | FATED 2020 |
Period | 10/07/2020 → … |
Internet address |
Fields of Science
- 113 Computer and information sciences