A Comparison of Language Modeling and Translation as Multilingual Pretraining Objectives

Zihao Li, Shaoxiong Ji, Timothee Mickus, Vincent Segonne, Jörg Tiedemann

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Pretrained language models (PLMs) display impressive performances and have captured the attention of the NLP community. Establishing best practices in pretraining has, therefore, become a major focus of NLP research, especially since insights gained from monolingual English models may not necessarily apply to more complex multilingual models. One significant caveat of the current state of the art is that different works are rarely comparable: they often discuss different parameter counts, training data, and evaluation methodology. This paper proposes a comparison of multilingual pretraining objectives in a controlled methodological environment. We ensure that training data and model architectures are comparable, and discuss the downstream performances across 6 languages that we observe in probing and fine-tuning scenarios. We make two key observations: (1) the architecture dictates which pretraining objective is optimal; (2) multilingual translation is a very effective pretraining objective under the right conditions. We make our code, data, and model weights available at https://github.com/Helsinki-NLP/lm-vs-mt.
Alkuperäiskielienglanti
OtsikkoProceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
ToimittajatYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
Sivumäärä13
JulkaisupaikkaKerrville
KustantajaThe Association for Computational Linguistics
Julkaisupäivä1 marrask. 2024
Sivut15882-15894
ISBN (elektroninen)979-8-89176-164-3
DOI - pysyväislinkit
TilaJulkaistu - 1 marrask. 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaConference on Empirical Methods in Natural Language Processing - Miami, Yhdysvallat (USA)
Kesto: 12 marrask. 202416 marrask. 2024

Tieteenalat

  • 6121 Kielitieteet
  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä