A Formal Category Theoretical Framework for Multi-model Data Transformations

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Data integration and migration processes in polystores and multi-model database management systems highly benefit from data and schema transformations. Rigorous modeling of transformations is a complex problem. The data and schema transformation field is scattered with multiple different transformation frameworks, tools, and mappings. These are usually domain-specific and lack solid theoretical foundations. Our first goal is to define category theoretical foundations for relational, graph, and hierarchical data models and instances. Each data instance is represented as a category theoretical mapping called a functor. We formalize data and schema transformations as Kan lifts utilizing the functorial representation for the instances. A Kan lift is a category theoretical construction consisting of two mappings satisfying the certain universal property. In this work, the two mappings correspond to schema transformation and data transformation.
Alkuperäiskielienglanti
OtsikkoHeterogeneous Data Management, Polystores, and Analytics for Healthcare : VLDB Workshops, Poly 2021 and DMAH 2021
ToimittajatEl Kindi Rezig, Vijay Gadepally, Timothy Mattson, Michael Stonebraker, Tim Kraska, Fusheng Wang, Gang Luo, Jun Kong, Alevtina Dubovitskaya
KustantajaSpringer, Cham
Julkaisupäivä20 elok. 2021
Sivut14-28
ISBN (painettu)978-3-030-93662-4
ISBN (elektroninen)978-3-030-93663-1
DOI - pysyväislinkit
TilaJulkaistu - 20 elok. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaVLDB Workshop on Polystore Systems for Heterogeneous Data in Multiple Databases with Privacy and Security Assurances -
Kesto: 20 elok. 202120 elok. 2021

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä