Abstrakti
We investigate the generalizability of deep convolutional neural network (CNN) on the task of disease classification from chest x-rays collected over multiple sites. We systematically train the model using datasets from three independent sites with different patient populations: National Institute of Health (NIH), Stanford University Medical Centre (CheXpert), and Shifa International Hospital (SIH). We formulate a sequential training approach and demonstrate that the model produces generalized prediction performance using held out test sets from the three sites. Our model generalizes better when trained on multiple datasets, with the CheXpert-Shifa-NET model performing significantly better (p-values < 0.05) than the models trained on individual datasets for 3 out of the 4 distinct disease classes.
Alkuperäiskieli | englanti |
---|---|
Otsikko | Advances in Computational Intelligence - 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Proceedings |
Toimittajat | Ignacio Rojas, Gonzalo Joya, Andreu Catala |
Sivumäärä | 12 |
Kustantaja | Springer Science and Business Media Deutschland GmbH |
Julkaisupäivä | 2023 |
Sivut | 541-552 |
ISBN (painettu) | 978-3-031-43084-8 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | 17th International Work-Conference on Artificial Neural Networks, IWANN 2023 - Ponta Delgada, Portugali Kesto: 19 kesäk. 2023 → 21 kesäk. 2023 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Vuosikerta | 14134 LNCS |
ISSN (painettu) | 0302-9743 |
ISSN (elektroninen) | 1611-3349 |
Lisätietoja
Publisher Copyright:© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Tieteenalat
- 217 Lääketieteen tekniikka