A Generalized Deep Learning Model for Multi-disease Chest X-Ray Diagnostics

Nabit Bajwa, Kedar Bajwa, Muhammad Faique Shakeel, Atif Rana, Kashif Haqqi, Suleiman Khan

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

We investigate the generalizability of deep convolutional neural network (CNN) on the task of disease classification from chest x-rays collected over multiple sites. We systematically train the model using datasets from three independent sites with different patient populations: National Institute of Health (NIH), Stanford University Medical Centre (CheXpert), and Shifa International Hospital (SIH). We formulate a sequential training approach and demonstrate that the model produces generalized prediction performance using held out test sets from the three sites. Our model generalizes better when trained on multiple datasets, with the CheXpert-Shifa-NET model performing significantly better (p-values < 0.05) than the models trained on individual datasets for 3 out of the 4 distinct disease classes.

Alkuperäiskielienglanti
OtsikkoAdvances in Computational Intelligence - 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Proceedings
ToimittajatIgnacio Rojas, Gonzalo Joya, Andreu Catala
Sivumäärä12
KustantajaSpringer Science and Business Media Deutschland GmbH
Julkaisupäivä2023
Sivut541-552
ISBN (painettu)978-3-031-43084-8
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
Tapahtuma17th International Work-Conference on Artificial Neural Networks, IWANN 2023 - Ponta Delgada, Portugali
Kesto: 19 kesäk. 202321 kesäk. 2023

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vuosikerta14134 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Lisätietoja

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Tieteenalat

  • 217 Lääketieteen tekniikka

Siteeraa tätä