An Improved Admissible Heuristic for Finding Optimal Bayesian Networks

Changhe Yuan, Brandon Michael Malone

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Recently two search algorithms, A* and breadth-first branch and bound (BFBnB), were developed based on a simple admissible heuristic for learning Bayesian network structures that optimize a scoring function. The heuristic represents a relaxation of the learning problem such that each variable chooses optimal parents independently. As a result, the heuristic may contain many directed cycles and result in a loose bound. This paper introduces an improved admissible heuristic that tries to avoid directed cycles within small groups of variables. A sparse representation is also introduced to store only the unique optimal parent choices. Empirical results show that the new techniques significantly improved the efficiency and scalability of A* and BFBnB on most of datasets tested in this paper.
Alkuperäiskielienglanti
OtsikkoProceedings of the 28th Conference of Uncertainty in Artificial Intelligence
Sivumäärä10
Julkaisupäivä2012
TilaJulkaistu - 2012
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaConference on Uncertainty in Artificial Intelligence - Catalina Island, Yhdysvallat (USA)
Kesto: 15 elok. 201217 elok. 2012
Konferenssinumero: 28

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä