An Inverse Problem for the Relativistic Boltzmann Equation

Tutkimustuotos: ArtikkelijulkaisuArtikkeli


We consider an inverse problem for the Boltzmann equation on a globally hyperbolic Lorentzian spacetime $(M,g)$ with an unknown metric $g$. We
consider measurements done in a neighbourhood $V\subset M$ of a timelike path $\mu$ that connects a point $x^-$ to a point $x^+$. The measurements
are modelled by a source-to-solution map,which maps a source supported in $V$ to the restriction of the solution of the Boltzmann equation to the set $V$. We show that the source-to-solution map uniquely determines the Lorentzian spacetime, up to an isometry, in the set $I^+(x^-)\cap I^-(x^+)\subset M$. The set $I^+(x^-)\cap I^-(x^+)$ is the intersection of the future of the point $x^-$ and the past of the point $x^+$, and hence is the maximal set to where causal signals sent from $x^-$ can propagate and return to the point $x^+$.
The proof of the result is based on using the nonlinearity of the Boltzmann equation as a beneficial feature for solving the inverse problem.
ArtikkeliarXiv:2011.09312 [math.AP]
NumeroarXiv:2011.09312 [math.AP]
TilaJulkaistu - 18 marraskuuta 2020
OKM-julkaisutyyppiB1 Kirjoitus tieteellisessä aikakauslehdessä


  • 111 Matematiikka

Siteeraa tätä