Analyzing and Improving the Quality of a Historical News Collection using Language Technology and Statistical Machine Learning Methods

Kimmo Kettunen, Timo Honkela, Krister Linden, Pekka Kauppinen, Tuula Pääkkönen, Jukka Kervinen

    Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

    Abstrakti

    In this paper, we study how to analyze and improve the quality of a large historical newspaper collection. The National Library of Finland has digitized millions of newspaper pages. The quality of the outcome of the OCR process is limited especially with regard to the oldest parts of the collection. Approaches such as crowd-sourcing has been used in this field to improve the quality of the texts, but in this case the volume of the materials makes it impossible to edit manually any substantial proportion of the texts. Therefore, we experiment with quality evaluation and improvement methods based on corpus statistics, language technology and machine learning in order to find ways to automate analysis and improvement process. The final objective is to reach a clear reduction in the human effort needed in the post-processing of the texts. We present quantitative evaluations of the current quality of the corpus, describe challenges related to texts written in a morphologically complex language, and describe two different approaches to achieve quality improvements.
    Alkuperäiskielienglanti
    OtsikkoIFLA World Library and Information Congress Proceedings : 80th IFLA General Conference and Assembly
    Sivumäärä23
    JulkaisupaikkaLyon, France
    KustantajaIFLA
    Julkaisupäivä16 elok. 2014
    TilaJulkaistu - 16 elok. 2014
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
    TapahtumaIFLA World Library and Information Congress - Lyon, Ranska
    Kesto: 16 elok. 201422 elok. 2014
    Konferenssinumero: 80

    Tieteenalat

    • 6121 Kielitieteet

    Siteeraa tätä