Antimicrobial resistance in the major respiratory tract pathogens - methods and epidemiology

Pauliina Kärpänoja

Tutkimustuotos: OpinnäyteVäitöskirjaArtikkelikokoelma

Kuvaus

The increasing trend of antimicrobial resistance in bacteria is a global problem, although resistance varies between geographical regions significantly. Today, common bacterial pathogens can be resistant to all known antimicrobial agents. The growing resistance has been linked to increasing use of antimicrobials in humans, food industry ant veterinary medicine in several studies. The battle against antimicrobial resistance is highly dependent on the knowledge of resistance rates in different bacterial species and accurate methods to measure the resistance. Finnish laboratories provide resistance data annually for the national FINRES report. This data is forwarded to the European EARSNet database and from 2016 also to the Global Antimicrobial Resistance Surveillance System (GLASS, organised by WHO). The solidity and uniformity of this data depend on the primary results of laboratories. This thesis is composed of four studies, which cover methodolgical issues in the susceptibility testing of the main respiratory pathogens and the connection between antimicrobial use and resistance. Susceptibility testing methods and their quality were examined for Haemophilus influenzae and Streptococcus pneumoniae. The connection between sulfamethoxazole-trimethoprim use and resistance was investigated among H. influenzae, S. pneumoniae and Moraxella catarrhalis using the FINRES data and drug consumption data provided by Finnish Medical Agency. As a result of this study the susceptibility testing method for H. influenzae with good sensitivity and specificity was launched for the Finnish susceptibility testing guideline (FiRe standard), the focus was in identifying the difficult to detect non-β-lactamase mediated ampicillin resistance. In addition, evaluation of the quality of susceptibility testing in Finnish laboratories showed good reproducubility with two indicator organisms H. influenzae (ATCC49247) and S. pneumoniae (ATCC49619) when recommended guidelines were followed. The quality was assessed from internal quality control results of the laboratories. An automated method (Vitek2®, AST GP-74, bioMerieux) for susceptibility testing of S. pneumoniae provides highly comparable results with the reference broth dilution method. Time to results is considerabely shorter than with the traditional methods. Regional sulfamethoxazole-trimethoprim consumption was found to have a positive connection with resistance in S. pneumoniae but the change of resistance was not significant. The change in resistance over time in H. influenzae was border-line significant, but the drug use did not explain the change. Change in resistance among M. catarrhalis was not statistically significant and there was no significant connection between the drug consumption and resistance. Sulfa-trimethoprim consumption fell throughout the country during the investigation period. Conclusions: The accuracy of the susceptibility testing of bacteria requires evidence-based standardization and continuous quality controlling. Clinical laboratory automation can be implemented safely in pneumococcal susceptibility testing. The impact of sulfamethoxazole-trimethoprim consumption on resistance varies for different bacterial species. A reduction in its use in the long run has not led to a significant reduction in resistance.
Alkuperäiskielienglanti
Myöntävä instituutio
  • Helsingin yliopisto
Valvoja/neuvonantaja
  • Sarkkinen, Hannu, Valvoja, Ulkoinen henkilö
  • Huovinen, Pentti, Valvoja, Ulkoinen henkilö
Myöntöpäivämäärä7 huhtikuuta 2017
JulkaisupaikkaHelsinki
Kustantaja
Painoksen ISBN978-951-51-3010-5
Sähköinen ISBN978-951-51-3011-2
TilaJulkaistu - 7 huhtikuuta 2017
OKM-julkaisutyyppiG5 Tohtorinväitöskirja (artikkeli)

Tieteenalat

  • 3111 Biolääketieteet

Lainaa tätä

Kärpänoja, Pauliina. / Antimicrobial resistance in the major respiratory tract pathogens - methods and epidemiology. Helsinki : University of Helsinki, 2017. 166 Sivumäärä
@phdthesis{cfcc863fe6574d129716ee7575c54f1e,
title = "Antimicrobial resistance in the major respiratory tract pathogens - methods and epidemiology",
abstract = "The increasing trend of antimicrobial resistance in bacteria is a global problem, although resistance varies between geographical regions significantly. Today, common bacterial pathogens can be resistant to all known antimicrobial agents. The growing resistance has been linked to increasing use of antimicrobials in humans, food industry ant veterinary medicine in several studies. The battle against antimicrobial resistance is highly dependent on the knowledge of resistance rates in different bacterial species and accurate methods to measure the resistance. Finnish laboratories provide resistance data annually for the national FINRES report. This data is forwarded to the European EARSNet database and from 2016 also to the Global Antimicrobial Resistance Surveillance System (GLASS, organised by WHO). The solidity and uniformity of this data depend on the primary results of laboratories. This thesis is composed of four studies, which cover methodolgical issues in the susceptibility testing of the main respiratory pathogens and the connection between antimicrobial use and resistance. Susceptibility testing methods and their quality were examined for Haemophilus influenzae and Streptococcus pneumoniae. The connection between sulfamethoxazole-trimethoprim use and resistance was investigated among H. influenzae, S. pneumoniae and Moraxella catarrhalis using the FINRES data and drug consumption data provided by Finnish Medical Agency. As a result of this study the susceptibility testing method for H. influenzae with good sensitivity and specificity was launched for the Finnish susceptibility testing guideline (FiRe standard), the focus was in identifying the difficult to detect non-β-lactamase mediated ampicillin resistance. In addition, evaluation of the quality of susceptibility testing in Finnish laboratories showed good reproducubility with two indicator organisms H. influenzae (ATCC49247) and S. pneumoniae (ATCC49619) when recommended guidelines were followed. The quality was assessed from internal quality control results of the laboratories. An automated method (Vitek2{\circledR}, AST GP-74, bioMerieux) for susceptibility testing of S. pneumoniae provides highly comparable results with the reference broth dilution method. Time to results is considerabely shorter than with the traditional methods. Regional sulfamethoxazole-trimethoprim consumption was found to have a positive connection with resistance in S. pneumoniae but the change of resistance was not significant. The change in resistance over time in H. influenzae was border-line significant, but the drug use did not explain the change. Change in resistance among M. catarrhalis was not statistically significant and there was no significant connection between the drug consumption and resistance. Sulfa-trimethoprim consumption fell throughout the country during the investigation period. Conclusions: The accuracy of the susceptibility testing of bacteria requires evidence-based standardization and continuous quality controlling. Clinical laboratory automation can be implemented safely in pneumococcal susceptibility testing. The impact of sulfamethoxazole-trimethoprim consumption on resistance varies for different bacterial species. A reduction in its use in the long run has not led to a significant reduction in resistance.",
keywords = "3111 Biomedicine",
author = "Pauliina K{\"a}rp{\"a}noja",
year = "2017",
month = "4",
day = "7",
language = "English",
isbn = "978-951-51-3010-5",
series = "Dissertationes Schola doctoralis scientiae circumiectalis, alimentariae, biologicae Universitatis Helsinkiensis",
publisher = "University of Helsinki",
number = "3/2017",
address = "Finland",
school = "University of Helsinki",

}

Antimicrobial resistance in the major respiratory tract pathogens - methods and epidemiology. / Kärpänoja, Pauliina.

Helsinki : University of Helsinki, 2017. 166 s.

Tutkimustuotos: OpinnäyteVäitöskirjaArtikkelikokoelma

TY - THES

T1 - Antimicrobial resistance in the major respiratory tract pathogens - methods and epidemiology

AU - Kärpänoja, Pauliina

PY - 2017/4/7

Y1 - 2017/4/7

N2 - The increasing trend of antimicrobial resistance in bacteria is a global problem, although resistance varies between geographical regions significantly. Today, common bacterial pathogens can be resistant to all known antimicrobial agents. The growing resistance has been linked to increasing use of antimicrobials in humans, food industry ant veterinary medicine in several studies. The battle against antimicrobial resistance is highly dependent on the knowledge of resistance rates in different bacterial species and accurate methods to measure the resistance. Finnish laboratories provide resistance data annually for the national FINRES report. This data is forwarded to the European EARSNet database and from 2016 also to the Global Antimicrobial Resistance Surveillance System (GLASS, organised by WHO). The solidity and uniformity of this data depend on the primary results of laboratories. This thesis is composed of four studies, which cover methodolgical issues in the susceptibility testing of the main respiratory pathogens and the connection between antimicrobial use and resistance. Susceptibility testing methods and their quality were examined for Haemophilus influenzae and Streptococcus pneumoniae. The connection between sulfamethoxazole-trimethoprim use and resistance was investigated among H. influenzae, S. pneumoniae and Moraxella catarrhalis using the FINRES data and drug consumption data provided by Finnish Medical Agency. As a result of this study the susceptibility testing method for H. influenzae with good sensitivity and specificity was launched for the Finnish susceptibility testing guideline (FiRe standard), the focus was in identifying the difficult to detect non-β-lactamase mediated ampicillin resistance. In addition, evaluation of the quality of susceptibility testing in Finnish laboratories showed good reproducubility with two indicator organisms H. influenzae (ATCC49247) and S. pneumoniae (ATCC49619) when recommended guidelines were followed. The quality was assessed from internal quality control results of the laboratories. An automated method (Vitek2®, AST GP-74, bioMerieux) for susceptibility testing of S. pneumoniae provides highly comparable results with the reference broth dilution method. Time to results is considerabely shorter than with the traditional methods. Regional sulfamethoxazole-trimethoprim consumption was found to have a positive connection with resistance in S. pneumoniae but the change of resistance was not significant. The change in resistance over time in H. influenzae was border-line significant, but the drug use did not explain the change. Change in resistance among M. catarrhalis was not statistically significant and there was no significant connection between the drug consumption and resistance. Sulfa-trimethoprim consumption fell throughout the country during the investigation period. Conclusions: The accuracy of the susceptibility testing of bacteria requires evidence-based standardization and continuous quality controlling. Clinical laboratory automation can be implemented safely in pneumococcal susceptibility testing. The impact of sulfamethoxazole-trimethoprim consumption on resistance varies for different bacterial species. A reduction in its use in the long run has not led to a significant reduction in resistance.

AB - The increasing trend of antimicrobial resistance in bacteria is a global problem, although resistance varies between geographical regions significantly. Today, common bacterial pathogens can be resistant to all known antimicrobial agents. The growing resistance has been linked to increasing use of antimicrobials in humans, food industry ant veterinary medicine in several studies. The battle against antimicrobial resistance is highly dependent on the knowledge of resistance rates in different bacterial species and accurate methods to measure the resistance. Finnish laboratories provide resistance data annually for the national FINRES report. This data is forwarded to the European EARSNet database and from 2016 also to the Global Antimicrobial Resistance Surveillance System (GLASS, organised by WHO). The solidity and uniformity of this data depend on the primary results of laboratories. This thesis is composed of four studies, which cover methodolgical issues in the susceptibility testing of the main respiratory pathogens and the connection between antimicrobial use and resistance. Susceptibility testing methods and their quality were examined for Haemophilus influenzae and Streptococcus pneumoniae. The connection between sulfamethoxazole-trimethoprim use and resistance was investigated among H. influenzae, S. pneumoniae and Moraxella catarrhalis using the FINRES data and drug consumption data provided by Finnish Medical Agency. As a result of this study the susceptibility testing method for H. influenzae with good sensitivity and specificity was launched for the Finnish susceptibility testing guideline (FiRe standard), the focus was in identifying the difficult to detect non-β-lactamase mediated ampicillin resistance. In addition, evaluation of the quality of susceptibility testing in Finnish laboratories showed good reproducubility with two indicator organisms H. influenzae (ATCC49247) and S. pneumoniae (ATCC49619) when recommended guidelines were followed. The quality was assessed from internal quality control results of the laboratories. An automated method (Vitek2®, AST GP-74, bioMerieux) for susceptibility testing of S. pneumoniae provides highly comparable results with the reference broth dilution method. Time to results is considerabely shorter than with the traditional methods. Regional sulfamethoxazole-trimethoprim consumption was found to have a positive connection with resistance in S. pneumoniae but the change of resistance was not significant. The change in resistance over time in H. influenzae was border-line significant, but the drug use did not explain the change. Change in resistance among M. catarrhalis was not statistically significant and there was no significant connection between the drug consumption and resistance. Sulfa-trimethoprim consumption fell throughout the country during the investigation period. Conclusions: The accuracy of the susceptibility testing of bacteria requires evidence-based standardization and continuous quality controlling. Clinical laboratory automation can be implemented safely in pneumococcal susceptibility testing. The impact of sulfamethoxazole-trimethoprim consumption on resistance varies for different bacterial species. A reduction in its use in the long run has not led to a significant reduction in resistance.

KW - 3111 Biomedicine

M3 - Doctoral Thesis

SN - 978-951-51-3010-5

T3 - Dissertationes Schola doctoralis scientiae circumiectalis, alimentariae, biologicae Universitatis Helsinkiensis

PB - University of Helsinki

CY - Helsinki

ER -

Kärpänoja P. Antimicrobial resistance in the major respiratory tract pathogens - methods and epidemiology. Helsinki: University of Helsinki, 2017. 166 s. (Dissertationes Schola doctoralis scientiae circumiectalis, alimentariae, biologicae Universitatis Helsinkiensis; 3/2017).