Automated content assessment and feedback for Finnish L2 learners in a picture description speaking task

Nhan Phan, Anna von Zansen, Maria Kautonen, Ekaterina Voskoboinik, Tamás Grósz, Raili Hilden, Mikko Kurimo

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

We propose a framework to address several unsolved challenges in second language (L2) automatic speaking assessment (ASA) and feedback. The challenges include: 1. ASA of visual task completion, 2. automated content grading and explanation of spontaneous L2 speech, 3. corrective feedback generation for L2 learners, and 4. all the above for a language that has minimal speech data of L2 learners. The proposed solution combines visual natural language generation (NLG), automatic speech recognition (ASR) and prompting a large language model (LLM) for low-resource L2 learners. We describe
the solution and the outcomes of our case study for a picture description task in Finnish. Our results indicate substantial agreement with human experts in grading, explanation and feedback. This framework has the potential for a significant impact in constructing next-generation computer-assisted language learning systems to provide automatic scoring with feedback for learners of low-resource languages.
Alkuperäiskielienglanti
OtsikkoProceedings of Interspeech 2024
Sivumäärä5
KustantajaISCA - International Speech Communication Association
Julkaisupäivä2024
Sivut317–321
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInterspeech - Kos, Kreikka
Kesto: 1 syysk. 20245 syysk. 2024
Konferenssinumero: 25
https://interspeech2024.org/

Julkaisusarja

NimiInterspeech
KustantajaISCA
ISSN (elektroninen)2958-1796

Tieteenalat

  • 516 Kasvatustieteet

Siteeraa tätä