BDNF Val66Met polymorphism moderates the association between sleep spindles and overnight visual recognition

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Kuvaus

A common single nucleotide polymorphism (SNP) of the brain-derived neurotrophic factor (BDNF) gene, Val66Met, has been reported to impair BDNF secretion and memory function. However, few studies have investigated the interaction of BDNF genotype and sleep characteristics, such as sleep spindles, that promote long-term potentiation during sleep. In this study we compared overnight visual memory between the carriers of BDNF Met and non-carriers (Val homozygotes), and examined how sleep spindle density associated with memory performance. The sample constituted of 151 adolescents (mean age 16.9 years; 69% Val homozygotes, 31% Met carriers). The learning task contained high and low arousal pictures from Interactive Affective Picture System. The learning task and all-night polysomnography were conducted at the homes of the adolescents. Slow (10–13 Hz) and fast (13–16 Hz) spindles were detected with automated algorithm. Neither post-sleep recognition accuracy nor spindle density differed between Val homozygotes and Met carriers. While frontal slow and fast spindle densities associated with better recognition accuracy in the entire sample, examining the allelic groups separately indicated paralleling associations in Val homozygotes only. Interaction analyses revealed a significant genotype-moderated difference in the associations between frontal fast sleep spindles and high arousal pictures. In sum, sleep spindles promote or indicate visual learning in Val homozygote adolescents but not in Met carriers. The result suggests that the role of sleep spindles in visual recognition memory is not equal across individuals but moderated by a common gene variant.
Alkuperäiskielienglanti
Artikkeli112157
LehtiBehavioural Brain Research
Vuosikerta375
Sivumäärä9
ISSN0166-4328
DOI - pysyväislinkit
TilaJulkaistu - 16 joulukuuta 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 515 Psykologia

Lainaa tätä

@article{96f58794f9cf407792a72bb8dd90cd6d,
title = "BDNF Val66Met polymorphism moderates the association between sleep spindles and overnight visual recognition",
abstract = "A common single nucleotide polymorphism (SNP) of the brain-derived neurotrophic factor (BDNF) gene, Val66Met, has been reported to impair BDNF secretion and memory function. However, few studies have investigated the interaction of BDNF genotype and sleep characteristics, such as sleep spindles, that promote long-term potentiation during sleep. In this study we compared overnight visual memory between the carriers of BDNF Met and non-carriers (Val homozygotes), and examined how sleep spindle density associated with memory performance. The sample constituted of 151 adolescents (mean age 16.9 years; 69{\%} Val homozygotes, 31{\%} Met carriers). The learning task contained high and low arousal pictures from Interactive Affective Picture System. The learning task and all-night polysomnography were conducted at the homes of the adolescents. Slow (10–13 Hz) and fast (13–16 Hz) spindles were detected with automated algorithm. Neither post-sleep recognition accuracy nor spindle density differed between Val homozygotes and Met carriers. While frontal slow and fast spindle densities associated with better recognition accuracy in the entire sample, examining the allelic groups separately indicated paralleling associations in Val homozygotes only. Interaction analyses revealed a significant genotype-moderated difference in the associations between frontal fast sleep spindles and high arousal pictures. In sum, sleep spindles promote or indicate visual learning in Val homozygote adolescents but not in Met carriers. The result suggests that the role of sleep spindles in visual recognition memory is not equal across individuals but moderated by a common gene variant.",
keywords = "LTP, plasticity, sleep spindle, Val66Met, visual memory, 515 Psychology",
author = "Risto Halonen and Liisa Kuula and Jari Lahti and Tommi Makkonen and Katri R{\"a}ikk{\"o}nen and Anu-Katriina Pesonen",
year = "2019",
month = "12",
day = "16",
doi = "10.1016/j.bbr.2019.112157",
language = "English",
volume = "375",
journal = "Behavioural Brain Research",
issn = "0166-4328",
publisher = "Elsevier Scientific Publ. Co",

}

TY - JOUR

T1 - BDNF Val66Met polymorphism moderates the association between sleep spindles and overnight visual recognition

AU - Halonen, Risto

AU - Kuula, Liisa

AU - Lahti, Jari

AU - Makkonen, Tommi

AU - Räikkönen, Katri

AU - Pesonen, Anu-Katriina

PY - 2019/12/16

Y1 - 2019/12/16

N2 - A common single nucleotide polymorphism (SNP) of the brain-derived neurotrophic factor (BDNF) gene, Val66Met, has been reported to impair BDNF secretion and memory function. However, few studies have investigated the interaction of BDNF genotype and sleep characteristics, such as sleep spindles, that promote long-term potentiation during sleep. In this study we compared overnight visual memory between the carriers of BDNF Met and non-carriers (Val homozygotes), and examined how sleep spindle density associated with memory performance. The sample constituted of 151 adolescents (mean age 16.9 years; 69% Val homozygotes, 31% Met carriers). The learning task contained high and low arousal pictures from Interactive Affective Picture System. The learning task and all-night polysomnography were conducted at the homes of the adolescents. Slow (10–13 Hz) and fast (13–16 Hz) spindles were detected with automated algorithm. Neither post-sleep recognition accuracy nor spindle density differed between Val homozygotes and Met carriers. While frontal slow and fast spindle densities associated with better recognition accuracy in the entire sample, examining the allelic groups separately indicated paralleling associations in Val homozygotes only. Interaction analyses revealed a significant genotype-moderated difference in the associations between frontal fast sleep spindles and high arousal pictures. In sum, sleep spindles promote or indicate visual learning in Val homozygote adolescents but not in Met carriers. The result suggests that the role of sleep spindles in visual recognition memory is not equal across individuals but moderated by a common gene variant.

AB - A common single nucleotide polymorphism (SNP) of the brain-derived neurotrophic factor (BDNF) gene, Val66Met, has been reported to impair BDNF secretion and memory function. However, few studies have investigated the interaction of BDNF genotype and sleep characteristics, such as sleep spindles, that promote long-term potentiation during sleep. In this study we compared overnight visual memory between the carriers of BDNF Met and non-carriers (Val homozygotes), and examined how sleep spindle density associated with memory performance. The sample constituted of 151 adolescents (mean age 16.9 years; 69% Val homozygotes, 31% Met carriers). The learning task contained high and low arousal pictures from Interactive Affective Picture System. The learning task and all-night polysomnography were conducted at the homes of the adolescents. Slow (10–13 Hz) and fast (13–16 Hz) spindles were detected with automated algorithm. Neither post-sleep recognition accuracy nor spindle density differed between Val homozygotes and Met carriers. While frontal slow and fast spindle densities associated with better recognition accuracy in the entire sample, examining the allelic groups separately indicated paralleling associations in Val homozygotes only. Interaction analyses revealed a significant genotype-moderated difference in the associations between frontal fast sleep spindles and high arousal pictures. In sum, sleep spindles promote or indicate visual learning in Val homozygote adolescents but not in Met carriers. The result suggests that the role of sleep spindles in visual recognition memory is not equal across individuals but moderated by a common gene variant.

KW - LTP

KW - plasticity

KW - sleep spindle

KW - Val66Met

KW - visual memory

KW - 515 Psychology

U2 - 10.1016/j.bbr.2019.112157

DO - 10.1016/j.bbr.2019.112157

M3 - Article

VL - 375

JO - Behavioural Brain Research

JF - Behavioural Brain Research

SN - 0166-4328

M1 - 112157

ER -