Benchmarks and models for entity-oriented polarity detection

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Alkuperäiskielienglanti
OtsikkoThe 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies : Proceedings of the Conference Volume 3 (Industry Papers)
Sivumäärä8
KustantajaAssociation for Computational Linguistics
Julkaisupäivä2018
Sivut129-136
ISBN (elektroninen)978-1-948087-30-8
DOI - pysyväislinkit
TilaJulkaistu - 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaConference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - New Orleans, Yhdysvallat (USA)
Kesto: 1 kesäkuuta 20186 kesäkuuta 2018
Konferenssinumero: 16

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Lainaa tätä

Pivovarova, L., Klami, A., & Yangarber, R. (2018). Benchmarks and models for entity-oriented polarity detection. teoksessa The 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Proceedings of the Conference Volume 3 (Industry Papers) (Sivut 129-136). Association for Computational Linguistics. https://doi.org/10.18653/v1/N18-3016
Pivovarova, Lidia ; Klami, Arto ; Yangarber, Roman. / Benchmarks and models for entity-oriented polarity detection. The 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Proceedings of the Conference Volume 3 (Industry Papers). Association for Computational Linguistics, 2018. Sivut 129-136
@inproceedings{b9a1e38e0875432f943545a52782b530,
title = "Benchmarks and models for entity-oriented polarity detection",
keywords = "113 Computer and information sciences",
author = "Lidia Pivovarova and Arto Klami and Roman Yangarber",
year = "2018",
doi = "10.18653/v1/N18-3016",
language = "English",
pages = "129--136",
booktitle = "The 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
publisher = "Association for Computational Linguistics",
address = "United States",

}

Pivovarova, L, Klami, A & Yangarber, R 2018, Benchmarks and models for entity-oriented polarity detection. julkaisussa The 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Proceedings of the Conference Volume 3 (Industry Papers). Association for Computational Linguistics, Sivut 129-136, Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Yhdysvallat (USA), 01/06/2018. https://doi.org/10.18653/v1/N18-3016

Benchmarks and models for entity-oriented polarity detection. / Pivovarova, Lidia; Klami, Arto; Yangarber, Roman.

The 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Proceedings of the Conference Volume 3 (Industry Papers). Association for Computational Linguistics, 2018. s. 129-136.

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

TY - GEN

T1 - Benchmarks and models for entity-oriented polarity detection

AU - Pivovarova, Lidia

AU - Klami, Arto

AU - Yangarber, Roman

PY - 2018

Y1 - 2018

KW - 113 Computer and information sciences

U2 - 10.18653/v1/N18-3016

DO - 10.18653/v1/N18-3016

M3 - Conference contribution

SP - 129

EP - 136

BT - The 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

PB - Association for Computational Linguistics

ER -

Pivovarova L, Klami A, Yangarber R. Benchmarks and models for entity-oriented polarity detection. julkaisussa The 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Proceedings of the Conference Volume 3 (Industry Papers). Association for Computational Linguistics. 2018. s. 129-136 https://doi.org/10.18653/v1/N18-3016