Kuvaus

Carbon balance of forests is defined by three main processes; photosynthesis, autotrophic respiration, and heterotrophic respiration. Climate impact of forests include also non-carbon effects like albedo, biogenic aerosols, effect on clouds, evaporation and surface roughness.
A well-thought measurement setup as well as standardised procedures are essential for a meaningful and robust monitoring and the comparability of the observations at the same site and in inter-site comparisons. Depending on the mitigation project objectives and scale different combination of methodologies could be used including forest carbon inventories, chamber measurements, tower-based eddy covariance flux measurements, large-scale atmospheric greenhouse gas measurements, aircraft and satellite remote sensing.
In addition to GHGs, forests have other important climate effects. They change surface albedo (warming effect), are source of volatile organic compounds (VOC), have effect on aerosol particle formation and growth, increases amount of cloud condensation nuclei (CCN), and has effect on cloud formation as well as on the precipitation. Moreover, any modification of the carbon cycle by removing or increasing CO2-binding vegetation has impact on the complex climate - carbon cycle feedback. We define these additional cooling effects as CarbonSink+. Accounting all these effects, this CarbonSink+ may increase the climate cooling impact of forests compared with pure carbon sink effect.
Land use based mitigation plays an important role in current Nationally Determined Contributions of Paris Agreement. Scientific findings indicate that through different actions land sector could provide up to 1/3 of the needed total mitigation through year 2030. However, permanence of ecosystem based carbon storages is still a challenge and trade-offs between different land use form exist and should be properly acknowledged in the mitigation projects.
We define in this report a cost effective, i.e. as simple as possible but good enough, measurement setup to verify both ordinary carbon sink and CarbonSink+ -effect. The methodology is planned for commercial applications, rather than for scientific purposes. The estimated prices of the instrumentation are based on present-day situation. In the conclusions of the report, we also describe first level principles and challenges which could help to formulate protocols for larger framework needed for the global commercial carbon market
Alkuperäiskielienglanti
Julkaisuvuosi2019
TilaJulkaistu - 2019
OKM-julkaisutyyppiEi sovellu

Tieteenalat

  • 1172 Ympäristötiede
  • 4112 Metsätiede

Lainaa tätä

@misc{0f969d8eccab409fa11248bff2098d34,
title = "Carbon sink and CarbonSink+: from observations to global potential",
abstract = "Carbon balance of forests is defined by three main processes; photosynthesis, autotrophic respiration, and heterotrophic respiration. Climate impact of forests include also non-carbon effects like albedo, biogenic aerosols, effect on clouds, evaporation and surface roughness.A well-thought measurement setup as well as standardised procedures are essential for a meaningful and robust monitoring and the comparability of the observations at the same site and in inter-site comparisons. Depending on the mitigation project objectives and scale different combination of methodologies could be used including forest carbon inventories, chamber measurements, tower-based eddy covariance flux measurements, large-scale atmospheric greenhouse gas measurements, aircraft and satellite remote sensing.In addition to GHGs, forests have other important climate effects. They change surface albedo (warming effect), are source of volatile organic compounds (VOC), have effect on aerosol particle formation and growth, increases amount of cloud condensation nuclei (CCN), and has effect on cloud formation as well as on the precipitation. Moreover, any modification of the carbon cycle by removing or increasing CO2-binding vegetation has impact on the complex climate - carbon cycle feedback. We define these additional cooling effects as CarbonSink+. Accounting all these effects, this CarbonSink+ may increase the climate cooling impact of forests compared with pure carbon sink effect.Land use based mitigation plays an important role in current Nationally Determined Contributions of Paris Agreement. Scientific findings indicate that through different actions land sector could provide up to 1/3 of the needed total mitigation through year 2030. However, permanence of ecosystem based carbon storages is still a challenge and trade-offs between different land use form exist and should be properly acknowledged in the mitigation projects.We define in this report a cost effective, i.e. as simple as possible but good enough, measurement setup to verify both ordinary carbon sink and CarbonSink+ -effect. The methodology is planned for commercial applications, rather than for scientific purposes. The estimated prices of the instrumentation are based on present-day situation. In the conclusions of the report, we also describe first level principles and challenges which could help to formulate protocols for larger framework needed for the global commercial carbon market",
keywords = "1172 Environmental sciences, 4112 Forestry",
author = "Tuomo Kalliokoski and Tuula Aalto and Jaana B{\"a}ck and Ekaterina Ezhova and Daniela Franz and Sami Haapanala and Eija Juurola and Veli-Matti Kerminen and Pasi Kolari and Liisa Kulmala and Jari Liski and Ivan Mammarella and Laura Matkala and Tuukka Pet{\"a}j{\"a} and Pekka Rantala and Timo Vesala and Markku Kulmala",
year = "2019",
language = "English",
publisher = "University of Helsinki",
address = "Finland",
type = "Other",

}

TY - GEN

T1 - Carbon sink and CarbonSink+

T2 - from observations to global potential

AU - Kalliokoski, Tuomo

AU - Aalto, Tuula

AU - Bäck, Jaana

AU - Ezhova, Ekaterina

AU - Franz, Daniela

AU - Haapanala, Sami

AU - Juurola, Eija

AU - Kerminen, Veli-Matti

AU - Kolari, Pasi

AU - Kulmala, Liisa

AU - Liski, Jari

AU - Mammarella, Ivan

AU - Matkala, Laura

AU - Petäjä, Tuukka

AU - Rantala, Pekka

AU - Vesala, Timo

AU - Kulmala, Markku

PY - 2019

Y1 - 2019

N2 - Carbon balance of forests is defined by three main processes; photosynthesis, autotrophic respiration, and heterotrophic respiration. Climate impact of forests include also non-carbon effects like albedo, biogenic aerosols, effect on clouds, evaporation and surface roughness.A well-thought measurement setup as well as standardised procedures are essential for a meaningful and robust monitoring and the comparability of the observations at the same site and in inter-site comparisons. Depending on the mitigation project objectives and scale different combination of methodologies could be used including forest carbon inventories, chamber measurements, tower-based eddy covariance flux measurements, large-scale atmospheric greenhouse gas measurements, aircraft and satellite remote sensing.In addition to GHGs, forests have other important climate effects. They change surface albedo (warming effect), are source of volatile organic compounds (VOC), have effect on aerosol particle formation and growth, increases amount of cloud condensation nuclei (CCN), and has effect on cloud formation as well as on the precipitation. Moreover, any modification of the carbon cycle by removing or increasing CO2-binding vegetation has impact on the complex climate - carbon cycle feedback. We define these additional cooling effects as CarbonSink+. Accounting all these effects, this CarbonSink+ may increase the climate cooling impact of forests compared with pure carbon sink effect.Land use based mitigation plays an important role in current Nationally Determined Contributions of Paris Agreement. Scientific findings indicate that through different actions land sector could provide up to 1/3 of the needed total mitigation through year 2030. However, permanence of ecosystem based carbon storages is still a challenge and trade-offs between different land use form exist and should be properly acknowledged in the mitigation projects.We define in this report a cost effective, i.e. as simple as possible but good enough, measurement setup to verify both ordinary carbon sink and CarbonSink+ -effect. The methodology is planned for commercial applications, rather than for scientific purposes. The estimated prices of the instrumentation are based on present-day situation. In the conclusions of the report, we also describe first level principles and challenges which could help to formulate protocols for larger framework needed for the global commercial carbon market

AB - Carbon balance of forests is defined by three main processes; photosynthesis, autotrophic respiration, and heterotrophic respiration. Climate impact of forests include also non-carbon effects like albedo, biogenic aerosols, effect on clouds, evaporation and surface roughness.A well-thought measurement setup as well as standardised procedures are essential for a meaningful and robust monitoring and the comparability of the observations at the same site and in inter-site comparisons. Depending on the mitigation project objectives and scale different combination of methodologies could be used including forest carbon inventories, chamber measurements, tower-based eddy covariance flux measurements, large-scale atmospheric greenhouse gas measurements, aircraft and satellite remote sensing.In addition to GHGs, forests have other important climate effects. They change surface albedo (warming effect), are source of volatile organic compounds (VOC), have effect on aerosol particle formation and growth, increases amount of cloud condensation nuclei (CCN), and has effect on cloud formation as well as on the precipitation. Moreover, any modification of the carbon cycle by removing or increasing CO2-binding vegetation has impact on the complex climate - carbon cycle feedback. We define these additional cooling effects as CarbonSink+. Accounting all these effects, this CarbonSink+ may increase the climate cooling impact of forests compared with pure carbon sink effect.Land use based mitigation plays an important role in current Nationally Determined Contributions of Paris Agreement. Scientific findings indicate that through different actions land sector could provide up to 1/3 of the needed total mitigation through year 2030. However, permanence of ecosystem based carbon storages is still a challenge and trade-offs between different land use form exist and should be properly acknowledged in the mitigation projects.We define in this report a cost effective, i.e. as simple as possible but good enough, measurement setup to verify both ordinary carbon sink and CarbonSink+ -effect. The methodology is planned for commercial applications, rather than for scientific purposes. The estimated prices of the instrumentation are based on present-day situation. In the conclusions of the report, we also describe first level principles and challenges which could help to formulate protocols for larger framework needed for the global commercial carbon market

KW - 1172 Environmental sciences

KW - 4112 Forestry

M3 - Other contribution

PB - University of Helsinki

ER -