Abstrakti
Scanning acoustic microscopy (SAM) finds use across many disciplines, e.g., biology, industrial quality control, and materials science, thanks to its unique ability to quantify mechanical sample properties combined with its high resolution. However, such imaging is often slow, especially if averaging is necessary. We present a Coded Excitation Scanning Acoustic Microscope (CESAM) that employs coded signals and show that it produces images of higher signal-to-noise ratios (SNRs) than the classical SAM in a comparable measurement time. The CESAM employs coded signals instead of the short bursts used in traditional SAMs, and we employ both linear and non-linear frequency modulation. Our results show that compared to the SAM approach, this modulation increases the SNR by 16.3 dB (from 39.9 to 56.2 dB) and reduces the echo duration by 26.7% when we employ a linear chirp to the transducer with a nominal bandwidth of 130-370 MHz. Driving the transducer with a broader bandwidth signal using non-linear chirps (100-450 MHz), we obtained a SNR increase of 10.3 dB and a reduced echo duration of 70.5%. The shorter echo duration increases z-resolution, whereas the lateral resolution remains limited by the wavelength. Finally, we show that by using these coded signals, one can obtain enhanced image quality relative to the standard actuation of the same measurement time. Our results have potential to invigorate the field of acoustic microscopy, especially with samples where the enhanced SNR and/or contrast-to-noise ratio is crucial for image quality.
Alkuperäiskieli | englanti |
---|---|
Artikkeli | 074901 |
Lehti | Review of Scientific Instruments |
Vuosikerta | 92 |
Numero | 7 |
Sivumäärä | 7 |
ISSN | 0034-6748 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 heinäk. 2021 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu |
Tieteenalat
- 114 Fysiikka