Chemical evolution and origin of the Luumäki gem beryl pegmatite: Constraints from mineral trace element chemistry and fractionation modeling

Radoslaw M. Michallik, Thomas Wagner, Tobias Fusswinkel, Jussi S. Heinonen, Pasi Heikkilä

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

The 1928 Ma old Luumäki gem beryl pegmatite is hosted by rapakivi granites of the Wiborg batholith in southeast Finland. The moderately evolved niobium-yttrium-fluorine (NYF) pegmatite system belongs to the topaz-beryl type of the rare-element pegmatite class. It has a simple major mineral assemblage of K-feldspar + plagioclase + quartz + biotite ± fluorite throughout the main pegmatite zones (border, wall, intermediate, and core zone). It consists of at least two chemically related bodies (Luumäki N and Luumäki S), of which only Luumäki N contains gem beryl (heliodor) bearing miarolitic pockets. We characterize the geology, mineral assemblages, and the major and trace element chemistry of K-feldspar, plagioclase, biotite and quartz from the pegmatite. The mineral chemistry data show a progressive enrichment of Rb, Cs and Tl in K-feldspars, and depletion in Sr and Ba. The K-feldspar from the beryl-bearing pockets records the highest enrichment in incompatible elements, distinct from the data trend shown by K-feldspar from the main pegmatite zones. The REE data for plagioclase show a decrease of the positive Eu-anomaly and then a change to negative Eu anomaly in the more evolved inner zones. This demonstrates an increase of the oxidation state of the pegmatite melt over time, consistent with the abundance of hematite in late-stage mineral assemblages including those of the miarolitic pockets. Fractional crystallization modeling is able to replicate the progressive enrichment of incompatible elements in K-feldspar,
and to predict degrees of crystallization, which are in good agreement with volume estimates for the different pegmatite zones. The modeling results demonstrate that formation of the zoned pegmatite up to the quartz core can be well explained by an igneous crystallization process, leading up to considerable enrichment in incompatible elements. The melt reached saturation with an aqueous hydrothermal fluid only after more than 90 % of the pegmatite melt had already crystallized. The separation of the oxidizing aqueous fluid was critical for the formation of the gem beryl pockets. The mineral trace element data of the Luumäki pegmatite and the host rapakivi granite, in conjunction with geochronological data, demonstrate that the pegmatite melt was derived from the residual melt of the rapakivi granites.
Alkuperäiskielienglanti
LehtiLithos
Vuosikerta274-275
Sivut147-168
Sivumäärä22
ISSN0024-4937
DOI - pysyväislinkit
TilaJulkaistu - maaliskuuta 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 1171 Geotieteet

Projektit

  • 3 Päättynyt

The role of fluids in the formation of rare-element deposits

Wagner, T., Akinfiev, N., Berni, G., Zotov, A., Prokofiev, V., Kozlowskiy, V., Poutiainen, M. & Heinrich, C.

01/09/201431/08/2017

Projekti: Tutkimusprojekti

State-of-the-art LA-ICPMS facility for microanalysis of Earth materials

Wagner, T., Fusswinkel, T., Berni, G. & Poutiainen, M.

01/08/201431/07/2019

Projekti: Tutkimusprojekti

Chemical evolution and origin of the Luumäki gem beryl pegmatite (SE Finland)

Wagner, T., Michallik, R., Rämö, T., Heikkilä, P. & Fusswinkel, T.

01/03/201331/03/2020

Projekti: Tutkimusprojekti

Siteeraa tätä