Complexity of Neural Network Training and ETR: Extensions with Effectively Continuous Functions

Teemu Hankala, Miika Hannula, Juha Kontinen, Jonni Virtema

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

We study the complexity of the problem of training neural networks defined via various activation functions. The training problem is known to be existsR-complete with respect to linear activation functions and the ReLU activation function. We consider the complexity of the problem with respect to the sigmoid activation function and other effectively continuous functions. We show that these training problems are polynomial-time many-one bireducible to the existential theory of the reals extended with the corresponding activation functions. In particular, we establish that the sigmoid activation function leads to the existential theory of the reals with the exponential function. It is thus open, and equivalent with the decidability of the existential theory of the reals with the exponential function, whether training neural networks using the sigmoid activation function is algorithmically solvable. In contrast, we obtain that the training problem is undecidable if sinusoidal activation functions are considered. Finally, we obtain general upper bounds for the complexity of the training problem in the form of low levels of the arithmetical hierarchy.
Alkuperäiskielienglanti
OtsikkoProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence
ToimittajatMichael Wooldridge, Jennifer Dy, Sriraam Natarajan
Sivumäärä8
Vuosikerta38(11)
KustantajaAAAI Press
Julkaisupäivä2024
Sivut12278-12285
ISBN (painettu)978-1-57735-887-9
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaAnnual AAAI Conference on Artificial Intelligence - Vancouver, Kanada
Kesto: 20 helmik. 202427 helmik. 2024
Konferenssinumero: 38
https://aaai.org/aaai-conference/

Julkaisusarja

Nimi
ISSN (painettu)2159-5399
ISSN (elektroninen)2374-3468

Lisätietoja

Revised version of a manuscript sent for review in April 2023

Tieteenalat

  • 111 Matematiikka

Siteeraa tätä