Complexity of syntactical tree fragments of Independence-Friendly logic

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

A dichotomy result of Sevenster (2014) [29] completely classified the quantifier prefixes of regular Independence-Friendly (IF) logic according to the patterns of quantifier dependence they contain. On one hand, prefixes that contain "Henkin" or "signalling" patterns were shown to characterize fragments of IF logic that capture NP-complete problems; all the remaining prefixes were shown instead to be essentially first-order.

In the present paper we develop the machinery which is needed in order to extend the results of Sevenster to non-prenex, regular IF sentences. This involves shifting attention from quantifier prefixes to a (rather general) class of syntactical tree prefixes.

We partially classify the fragments of regular IF logic that are thus determined by syntactical trees; in particular, a) we identify four classes of tree prefixes that are neither signaling nor Henkin, and yet express NP-complete problems and other second-order concepts; and b) we give more general criteria for checking the firstorderness of an IF sentence. (C) 2020 Published by Elsevier B.V.

Alkuperäiskielienglanti
Artikkeli102859
LehtiAnnals of Pure and Applied Logic
Vuosikerta172
Numero1
Sivumäärä43
ISSN0168-0072
DOI - pysyväislinkit
TilaJulkaistu - tammik. 2021
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Tieteenalat

  • 611 Filosofia

Siteeraa tätä