Contextualized Graph Embeddings for Adverse Drug Event Detection

Ya Gao, Shaoxiong Ji, Tongxuan Zhang, Prayag Tiwari, Pekka Marttinen

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

An adverse drug event (ADE) is defined as an adverse reaction resulting from improper drug use, reported in various documents such as biomedical literature, drug reviews, and user posts on social media. The recent advances in natural language processing techniques have facilitated automated ADE detection from documents. However, the contextualized information and relations among text pieces are less explored. This paper investigates contextualized language models and heterogeneous graph representations. It builds a contextualized graph embedding model for adverse drug event detection. We employ different convolutional graph neural networks and pre-trained contextualized embeddings as the building blocks. Experimental results show that our methods can improve the performance by comparing recent ADE detection models, suggesting that a text graph can capture causal relationships and dependency between different entities in a document.

Alkuperäiskielienglanti
OtsikkoMachine Learning and Knowledge Discovery in Databases. ECML PKDD 2022
ToimittajatMassih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas
Sivumäärä16
Vuosikerta13714
JulkaisupaikkaCham
KustantajaSpringer
Julkaisupäivä16 maalisk. 2023
Sivut605-620
ISBN (painettu)978-3-031-26389-7
ISBN (elektroninen)978-3-031-26390-3
DOI - pysyväislinkit
TilaJulkaistu - 16 maalisk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - Grenoble, Ranska
Kesto: 19 syysk. 202223 syysk. 2022
https://2022.ecmlpkdd.org/

Julkaisusarja

NimiLecture Notes in Computer Science
KustantajaSpringer
Vuosikerta13714
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Lisätietoja

Publisher Copyright:
© 2023, The Author(s).

Tieteenalat

  • 6121 Kielitieteet
  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä