Abstrakti
An adverse drug event (ADE) is defined as an adverse reaction resulting from improper drug use, reported in various documents such as biomedical literature, drug reviews, and user posts on social media. The recent advances in natural language processing techniques have facilitated automated ADE detection from documents. However, the contextualized information and relations among text pieces are less explored. This paper investigates contextualized language models and heterogeneous graph representations. It builds a contextualized graph embedding model for adverse drug event detection. We employ different convolutional graph neural networks and pre-trained contextualized embeddings as the building blocks. Experimental results show that our methods can improve the performance by comparing recent ADE detection models, suggesting that a text graph can capture causal relationships and dependency between different entities in a document.
Alkuperäiskieli | englanti |
---|---|
Otsikko | Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022 |
Toimittajat | Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas |
Sivumäärä | 16 |
Vuosikerta | 13714 |
Julkaisupaikka | Cham |
Kustantaja | Springer |
Julkaisupäivä | 16 maalisk. 2023 |
Sivut | 605-620 |
ISBN (painettu) | 978-3-031-26389-7 |
ISBN (elektroninen) | 978-3-031-26390-3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 16 maalisk. 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - Grenoble, Ranska Kesto: 19 syysk. 2022 → 23 syysk. 2022 https://2022.ecmlpkdd.org/ |
Julkaisusarja
Nimi | Lecture Notes in Computer Science |
---|---|
Kustantaja | Springer |
Vuosikerta | 13714 |
ISSN (painettu) | 0302-9743 |
ISSN (elektroninen) | 1611-3349 |
Lisätietoja
Publisher Copyright:© 2023, The Author(s).
Tieteenalat
- 6121 Kielitieteet
- 113 Tietojenkäsittely- ja informaatiotieteet