Correcting Predictions for Approximate Bayesian Inference

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinen

Abstrakti

Bayesian models quantify uncertainty and facilitate optimal decision-making in downstream applications. For most models, however, practitioners are forced to use approximate inference techniques that lead to sub-optimal decisions due to incorrect posterior predictive distributions. We present a novel approach that corrects for inaccuracies in posterior inference by altering the decision-making process. We train a separate model to make optimal decisions under the approximate posterior, combining interpretable Bayesian modeling with optimization of direct predictive accuracy in a principled fashion. The solution is generally applicable as a plug-in module for predictive decision-making for arbitrary probabilistic programs, irrespective of the posterior inference strategy. We demonstrate the approach empirically in several problems, confirming its potential.
Alkuperäiskielimuu / ei tiedossa
LehtiarXiv.org
ISSN2331-8422
TilaJulkaistu - 11 syyskuuta 2019
OKM-julkaisutyyppiB1 Kirjoitus tieteellisessä aikakauslehdessä

Siteeraa tätä