COVID-19 Detection via Image Classification using Deep Learning on Chest X-Ray

Mohammad Ayyaz Azeem, Muhammad Irfan Khan, Suleiman A. Khan

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

The focus of this study is to evaluate and examine a set of deep learning transfer learning techniques applied to chest radiograph images for the classification of COVID-19, normal (healthy), and pneumonia. In this work, we have used four transfer learning models, VGG16, InceptionV3, ResNet50, and DenseNet121 for the classification tasks. Our results indicate that the VGG16 method outperforms comparative classification models in terms of accuracy, sensitivity, and specificity. The VGG16 model detects and classifies COVID-19, normal (healthy), and pneumonia with 94% test accuracy, 94% sensitivity, and 94.20% specificity. Code is publically available at: https://github.com/ayyaz-azeem/Covid19challenge.git

Alkuperäiskielienglanti
Otsikko2021 Ethics and Explainability for Responsible Data Science (EE-RDS)
KustantajaIEEE
Julkaisupäivä2021
ISBN (elektroninen)978-1-6654-8358-2
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaEthics and Explainability for Responsible Data Science Conference - Johannesburg, Etelä-Afrikka
Kesto: 27 lokak. 202128 lokak. 2021

Lisätietoja

Publisher Copyright:
© 2021 IEEE.

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä