Critiquing-based Modeling of Subjective Preferences

Alan Medlar, Jing Li, Yang Liu, Dorota Glowacka

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Applications designed for entertainment and other non-instrumental purposes are challenging to optimize because the relationships between system parameters and user experience can be unclear. Ideally, we would crowdsource these design questions, but existing approaches are geared towards evaluation or ranking discrete choices and not for optimizing over continuous parameter spaces. In addition, users are accustomed to informally expressing opinions about experiences as critiques (e.g. it's too cold, too spicy, too big), rather than giving precise feedback as an optimization algorithm would require. Unfortunately, it can be difficult to analyze qualitative feedback, especially in the context of quantitative modeling. In this article, we present collective criticism, a critiquing-based approach for modeling relationships between system parameters and subjective preferences. We transform critiques, such as "it was too easy/too challenging", into censored intervals and analyze them using interval regression. Collective criticism has several advantages over other approaches: "too much/too little"-style feedback is intuitive for users and allows us to build predictive models for the optimal parameterization of the variables being critiqued. We present two studies where we model: These studies demonstrate the flexibility of our approach, and show that it produces robust results that are straightforward to interpret and inline with users' stated preferences.

Alkuperäiskielienglanti
OtsikkoUMAP2022 - Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization
Sivumäärä9
KustantajaACM
Julkaisupäiväheinäk. 2022
Sivut234-242
ISBN (elektroninen)978-1-4503-9207-5
DOI - pysyväislinkit
TilaJulkaistu - heinäk. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
Tapahtuma30th ACM Conference on User Modeling, Adaptation and Personalization, UMAP2022 - Virtual, Online, Espanja
Kesto: 4 heinäk. 20227 heinäk. 2022

Julkaisusarja

NimiUMAP2022 - Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization

Lisätietoja

Publisher Copyright:
© 2022 ACM.

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä