Abstrakti
In this article we study the so-called cutoff phenomenon in the total variation distance when n→∞ for the maximum of n ergodic Ornstein–Uhlenbeck processes driven by stable noise of index α. Using the asymptotic theory of extremes; in the Gaussian case we prove that the total variation distance between the distribution of the maximum and its limiting distribution converges to a universal function in a constant time window around the cutoff time, a fact known as profile cutoff in the context of stochastic processes. On the other hand, in the heavy-tailed case we prove that there is not cutoff. ©2020 Elsevier B.V. All rights reserved.
Alkuperäiskieli | englanti |
---|---|
Artikkeli | 108954 |
Lehti | Statistics & Probability Letters |
Vuosikerta | 168 |
Sivumäärä | 7 |
ISSN | 0167-7152 |
DOI - pysyväislinkit | |
Tila | Julkaistu - tammik. 2021 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu |
Tieteenalat
- 112 Tilastotiede