Data-Driven News Generation for Automated Journalism

Leo Leppänen, Myriam Munezero, Mark Granroth-Wilding, Hannu Toivonen

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

Abstrakti

Despite increasing amounts of data and ever improving natural language generation techniques, work on automated journalism is still relatively scarce. In this paper, we explore the field and challenges associated with building a journalistic natural language generation system. We present a set of requirements that should guide system design, including transparency, accuracy, modifiability and transferability. Guided by the requirements, we present a data-driven architecture for automated journalism that is largely domain and language independent. We illustrate its practical application in the production of news articles upon a user request about the 2017 Finnish municipal elections in three languages, demonstrating the successfulness of the data-driven, modular approach of the design. We then draw some lessons for future automated journalism.
Alkuperäiskielienglanti
OtsikkoThe 10th International Natural Language Generation conference, Proceedings of the Conference
Sivumäärä10
JulkaisupaikkaStroudsburg
KustantajaThe Association for Computational Linguistics
Julkaisupäivä4 syysk. 2017
Sivut188-197
ISBN (painettu)978-1-945626-52-4
DOI - pysyväislinkit
TilaJulkaistu - 4 syysk. 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Natural Language Generation - Tilburg, Alankomaat
Kesto: 5 marrask. 20188 marrask. 2018
Konferenssinumero: 11
https://inlg2018.uvt.nl/

Tieteenalat

  • 113 Tietojenkäsittely- ja informaatiotieteet

Siteeraa tätä