De Rham algebras of closed quasiregularly elliptic manifolds are Euclidean

Tutkimustuotos: TyöpaperiEsipainos

Abstrakti

We show that, if a closed, connected, and oriented Riemannian $n$-manifold $N$ admits a non-constant quasiregular mapping from the Euclidean $n$-space $\mathbb{R}^n$, then the de Rham cohomology algebra $H_{\mathrm{dR}}^*(N)$ of $N$ embeds into the exterior algebra ${\bigwedge}^*\mathbb{R}^n$. As a consequence, we obtain a homeomorphic classification of closed simply connected quasiregularly elliptic $4$-manifolds.
Alkuperäiskielienglanti
TilaJulkaistu - 22 helmik. 2023
OKM-julkaisutyyppiEi sovellu

Siteeraa tätä