Deep learning-based prediction of one-year mortality in Finland is an accurate but unfair aging marker

Andrius Vabalas, Tuomo Hartonen, Pekka Vartiainen, Sakari Jukarainen, Essi Viippola, Rodosthenis S. Rodosthenous, Aoxing Liu, Sara Hägg, Markus Perola, Andrea Ganna

Tutkimustuotos: ArtikkelijulkaisuArtikkeliTieteellinenvertaisarvioitu

Abstrakti

Short-term mortality risk, which is indicative of individual frailty, serves as a marker for aging. Previous age clocks focused on predicting either chronological age or longer-term mortality. Aging clocks predicting short-term mortality are lacking and their algorithmic fairness remains unexamined. We developed a deep learning model to predict 1-year mortality using nationwide longitudinal data from the Finnish population (FinRegistry; n = 5.4 million), incorporating more than 8,000 features spanning up to 50 years. We achieved an area under the curve (AUC) of 0.944, outperforming a baseline model that included only age and sex (AUC = 0.897). The model generalized well to different causes of death (AUC > 0.800 for 45 of 50 causes), including coronavirus disease 2019, which was absent in the training data. Performance varied among demographics, with young females exhibiting the best and older males the worst results. Extensive prediction fairness analyses highlighted disparities among disadvantaged groups, posing challenges to equitable integration into public health interventions. Our model accurately identified short-term mortality risk, potentially serving as a population-wide aging marker.

Alkuperäiskielienglanti
LehtiNature Aging
Vuosikerta4
Sivut1014–1027
Sivumäärä22
ISSN2662-8465
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu

Lisätietoja

Publisher Copyright:
© The Author(s) 2024.

Tieteenalat

  • 3121 Yleislääketiede, sisätaudit ja muut kliiniset lääketieteet
  • 1182 Biokemia, solu- ja molekyylibiologia
  • 3112 Neurotieteet
  • 3124 Neurologia ja psykiatria

Siteeraa tätä