Abstrakti
Short-term mortality risk, which is indicative of individual frailty, serves as a marker for aging. Previous age clocks focused on predicting either chronological age or longer-term mortality. Aging clocks predicting short-term mortality are lacking and their algorithmic fairness remains unexamined. We developed a deep learning model to predict 1-year mortality using nationwide longitudinal data from the Finnish population (FinRegistry; n = 5.4 million), incorporating more than 8,000 features spanning up to 50 years. We achieved an area under the curve (AUC) of 0.944, outperforming a baseline model that included only age and sex (AUC = 0.897). The model generalized well to different causes of death (AUC > 0.800 for 45 of 50 causes), including coronavirus disease 2019, which was absent in the training data. Performance varied among demographics, with young females exhibiting the best and older males the worst results. Extensive prediction fairness analyses highlighted disparities among disadvantaged groups, posing challenges to equitable integration into public health interventions. Our model accurately identified short-term mortality risk, potentially serving as a population-wide aging marker.
Alkuperäiskieli | englanti |
---|---|
Lehti | Nature Aging |
Vuosikerta | 4 |
Sivut | 1014–1027 |
Sivumäärä | 22 |
ISSN | 2662-8465 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä, vertaisarvioitu |
Lisätietoja
Publisher Copyright:© The Author(s) 2024.
Tieteenalat
- 3121 Yleislääketiede, sisätaudit ja muut kliiniset lääketieteet
- 1182 Biokemia, solu- ja molekyylibiologia
- 3112 Neurotieteet
- 3124 Neurologia ja psykiatria